Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T11:40:47.202Z Has data issue: false hasContentIssue false

A worldwide comparison of the best sites for submillimetre astronomy

Published online by Cambridge University Press:  30 January 2013

P. Tremblin
Affiliation:
Laboratoire AIM Paris-Saclay (CEA/Irfu - Uni. Paris Diderot - CNRS/INSU), Centre d'études de Saclay, 91191 Gif-Sur-Yvette, France email: [email protected]
N. Schneider
Affiliation:
Laboratoire AIM Paris-Saclay (CEA/Irfu - Uni. Paris Diderot - CNRS/INSU), Centre d'études de Saclay, 91191 Gif-Sur-Yvette, France email: [email protected] Université de Bordeaux, LAB, UMR 5804, CNRS, 33270, Floirac, France
V. Minier
Affiliation:
Laboratoire AIM Paris-Saclay (CEA/Irfu - Uni. Paris Diderot - CNRS/INSU), Centre d'études de Saclay, 91191 Gif-Sur-Yvette, France email: [email protected]
G. Al. Durand
Affiliation:
Laboratoire AIM Paris-Saclay (CEA/Irfu - Uni. Paris Diderot - CNRS/INSU), Centre d'études de Saclay, 91191 Gif-Sur-Yvette, France email: [email protected]
J. Urban
Affiliation:
Chalmers University of Technology, Department of Earth and Space Sciences, 41296 Göteborg, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre (submm) astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile. In this context, we report on measurements of the sky opacity at 200 μm over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. Based on satellite data, we present a comparison of the atmospheric transmission at 200, 350 μm between the best potential/known sites for submillimetre astronomy all around the world.

The precipitable water vapour (PWV) was extracted from satellite measurements of the Infrared Atmospheric Sounding Interferometer (IASI) on the METOP-A satellite, between 2008 and 2010. We computed the atmospheric transmission at 200 μm and 350 μm using the forward atmospheric model MOLIERE (Microwave Observation LIne Estimation and REtrieval). This method allows us to compare known sites all around the world without the calibration biases of multiple in-situ instruments, and to explore the potential of new sites.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Chamberlin, R. A., Lane, A. P., & Stark, A. A. 1997, ApJ, 476, 428Google Scholar
Clerbaux, C., Boynard, A., Clarisse, L., et al. 2009, ACP, 9, 6041Google Scholar
De Gregori, S., deAAAAPetris, M., Decina, B., et al. 2012, MNRAS, 425, 222Google Scholar
Herbin, H., Hurtmans, D., Clerbaux, C., Clarisse, L., & Coheur, P. F. 2009, ACP, 9, 9433Google Scholar
Hills, R. E., Kurz, R. J., & Peck, A. B. 2010, SPIE, 7733, 773317Google Scholar
Marrone, D., Blundell, R., Tong, E., et al. 2005, STTGoogle Scholar
Matsushita, S., Matsuo, H., Pardo, J. R., & Radford, S. J. E. 1999, PASJ, 51, 603Google Scholar
Oberst, T. E., Parshley, S. C., Stacey, G. J., et al. 2006, ApJ, 652, L125Google Scholar
Pardo, J. R., Cernicharo, J., & Serabyn, E. 2001, IEEE, 49, 1683Google Scholar
Peterson, J. B., Radford, S. J. E., Ade, P., et al. 2003, PASP, 115, 383Google Scholar
Phulpin, T., Blumstein, D., Prel, F., et al. 2007, AERSDPU III, 6684, 12Google Scholar
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1Google Scholar
Pougatchev, N., August, T., Calbet, X., et al. 2008, EOS XIII, 7081, 18Google Scholar
Ricaud, P., Gabard, B., Derrien, S., et al. 2010, ITGRS, 48, 2189Google Scholar
Schneider, N., Urban, J., & Baron, P. 2009, PSS, 57, 1419Google Scholar
Tremblin, P., Minier, V., Schneider, N., et al. 2011, A&A, 535, 112Google Scholar
Urban, J., Baron, P., Lautié, N., et al. 2004, JQSRT, 83, 529Google Scholar
Yang, H., Kulesa, C. A., Walker, C. K., et al. 2010, PASP, 122, 490Google Scholar