Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T10:44:33.335Z Has data issue: false hasContentIssue false

Wind inhibition in HMXBs: the effect of clumping and implications for X-ray luminosity

Published online by Cambridge University Press:  30 December 2019

Jiří Krtička
Affiliation:
Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Brno, Czech Republic email: [email protected]
Jiří Kubát
Affiliation:
Astronomický ústav, Akademie věd České republiky, Ondřejov, Czech Republic email: [email protected]
Iva Krtičková
Affiliation:
Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Brno, Czech Republic email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Winds of hot stars are driven by the radiative force due to absorption of light in the lines of heavier elements. Consequently, the mass-loss rate and the wind velocity depend on the ionization state of the wind. As a result of this, there is a feedback between the ionizing X-ray source and the stellar wind in HMXBs powered by wind accretion. We study the influence of the small-scale wind structure (clumping) on this feedback using our NLTE hydrodynamical wind models. We find that clumping weakens the effect of X-ray irradiation. Moreover, we show that the observed X-ray luminosities of HMXBs can not be explained by wind accretion scenario without introducing the X-ray feedback. Taking into account the feedback, the observed and estimated X-ray luminosities nicely agree. We identify two cases of X-ray feedback with low and high X-ray luminosities that can explain the dichotomy between SFXTs and sgXBs.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bondi, H., & Hoyle, F. 1944, MNRAS, 104, 273 CrossRefGoogle Scholar
Hatchett, S., & McCray, R. 1977, ApJ, 211, 552 CrossRefGoogle Scholar
Ho, C., & Arons, J. 1987, ApJ, 316, 283 CrossRefGoogle Scholar
Hoyle, F., & Lyttleton, R. A. 1941, MNRAS, 101, 227 CrossRefGoogle Scholar
Krtika, J., & Kubát, J. 2017, A&A, 606, A31 Google Scholar
Krtika, J., Kubát, J., & Skalický, J. 2012, ApJ, 757, 162 CrossRefGoogle Scholar
Krtika, J., Kubát, J., & Krtiková, I. 2015, A&A, 579, A111 Google Scholar
Martínez-Núñez, S., Kretschmar, P., Bozzo, E., et al. 2017, Space Sci. Rev 212, 59 CrossRefGoogle Scholar
Muijres, L., de Koter, A., Vink, J., et al. 2011, A&A, 526, A32 Google Scholar
Oskinova, L. M., Feldmeier, A., & Kretschmar, P. 2012, MNRAS, 421, 2820 CrossRefGoogle Scholar
Sander, A. A. C., Fürst, F., Kretschmar, P., et al. 2018, A&A, 610, A60 Google Scholar