Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T05:22:16.810Z Has data issue: false hasContentIssue false

White-dwarf asteroseismology: An update

Published online by Cambridge University Press:  09 October 2020

Alejandro H. Córsico*
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata, Argentina Instituto de Astrofísica de La Plata, IALP (CCT La Plata), CONICET-UNLP email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The vast majority of stars that populate the Universe will end their evolution as white-dwarf stars. Applications of white dwarfs include cosmochronology, evolution of planetary systems, and also as laboratories to study non-standard physics and crystallization. In addition to the knowledge of their surface properties from spectroscopy combined with model atmospheres, the global pulsations that they exhibit during several phases of their evolution allow spying on the deep interior of these stars. Indeed, by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable white dwarfs and the periods predicted by representative theoretical models, we can infer details of the internal chemical stratification, the total mass, and even the stellar rotation profile and strength of magnetic fields. In this article, we review the current state of the area, emphasizing the latest findings provided by space-mission data.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Althaus, L. G., Córsico, A. H., Isern, J., García-Berro, E. et al. 2010, A&ARv, 18, 471Google Scholar
Althaus, L. G., Miller Bertolami, M. M., & Córsico, A. H. 2013, A&A, 557, A19Google Scholar
Althaus, L. G., Córsico, A. H., Uzundag, M., et al. 2019, arXiv e-prints,arXiv:1911.02442Google Scholar
Baglin, A. 1969, Astrophysical Letters, 3, 119Google Scholar
Baglin, A., Auvergne, M., Barge, P., et al. 2009, Transiting Planets, 71Google Scholar
Bell, K. J., Córsico, A. H., Bischoff-Kim, A., et al. 2019, A&A, 632, A42Google Scholar
Bell, K. J., Hermes, J. J., Montgomery, M. H., et al. 2017, 20th European White Dwarf Workshop, 303Google Scholar
Bell, K. J., Hermes, J. J., Montgomery, M. H., et al. 2016, ApJ, 829, 82CrossRefGoogle Scholar
Bell, K. J., Hermes, J. J., Bischoff-Kim, A., et al. 2015, ApJ, 809, 14CrossRefGoogle Scholar
Bergeron, P., Wesemael, F., Dufour, P., et al. 2011, ApJ, 737, 2810.1088/0004-637X/737/1/28CrossRefGoogle Scholar
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977CrossRefGoogle Scholar
Buchler, J. R., Goupil, M.-J., & Hansen, C. J. 1997, A&A, 321, 159Google Scholar
Camisassa, M. E., Althaus, L. G., Córsico, A. H., et al. 2019, A&A, 625, A87Google Scholar
Chanmugam, G. 1972, Nature Physical Science, 236, 83CrossRefGoogle Scholar
Moya, A., Barceló Forteza, S., Bonfanti, A., et al. 2018, A&A, 620, A203Google Scholar
Córsico, A. H., De Gerónimo, F. C., Camisassa, M. E., et al. 2019b, arXiv e-prints,arXiv:1910.07385Google Scholar
Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M., et al. 2019a, A&ARv, 27, 7Google Scholar
Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M., et al. 2012, A&A, 541, A42Google Scholar
Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M., et al. 2009, A&A, 499, 257Google Scholar
Córsico, A. H., Althaus, L. G., Kepler, S. O., et al. 2008, A&A, 478, 869Google Scholar
Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M., et al. 2007, A&A, 461, 1095Google Scholar
Córsico, A. H., Miller Bertolami, M. M., Althaus, L. G., et al. 2007, A&A, 475, 619Google Scholar
Dziembowski, W. 1982, Acta. Astron., 32, 147Google Scholar
Faulkner, J. & Gribbin, J. R. 1968, Nature, 218, 734CrossRefGoogle Scholar
Fontaine, G. & Brassard, P. 2008 PASP, 120, 104310.1086/592788CrossRefGoogle Scholar
Garca-Berro, E., Torres, S., Althaus, L. G., et al. 2010, Nature, 465, 194CrossRefGoogle Scholar
Goupil, M. J., Dziembowski, W. A., & Fontaine, G. 1998, Baltic Astronomy, 7, 21Google Scholar
Harper, R. V. R. & Rose, W. K. 1970, ApJ, 162, 963CrossRefGoogle Scholar
Hermes, J. J., Gänsicke, B. T., Kawaler, S. D., et al. 2017, ApJS, 232, 23CrossRefGoogle Scholar
Hermes, J. J., Montgomery, M. H., Bell, K. J., et al. 2015, ApJL, 810, L5CrossRefGoogle Scholar
Howell, S. B., Sobeck, C., Haas, M., et al. 2014, PASP, 126, 39810.1086/676406CrossRefGoogle Scholar
Kawaler, S. D., & Bradley, P. A. 1994, ApJ, 427, 41510.1086/174152CrossRefGoogle Scholar
Koen, C. & Laney, D. 2000, MNRAS, 311, 636CrossRefGoogle Scholar
Landolt, A. U. 1968, ApJ, 153, 15110.1086/149645CrossRefGoogle Scholar
Lasker, B. M. & Hesser, J. E. 1969, ApJL, 158, L171CrossRefGoogle Scholar
Lasker, B. M. & Hesser, J. E. 1971, ApJL, 163, L8910.1086/180673CrossRefGoogle Scholar
Ledoux, P. J. & Sauvenier-Goffin, E. 1950, ApJ, 111, 61110.1086/145305CrossRefGoogle Scholar
Luan, J. & Goldreich, P. 2018, ApJ, 863, 82CrossRefGoogle Scholar
McGraw, J. T. 1979, ApJ, 229, 203CrossRefGoogle Scholar
Mestel, L. 1952, MNRAS, 112, 58310.1093/mnras/112.6.583CrossRefGoogle Scholar
Miller Bertolami, M. M. & Althaus, L. G. 2006, A&A, 454, 845Google Scholar
Montgomery, M. H., Hermes, J. J., & Winget, D. E. 2019, arXiv e-prints,arXiv:1902.05615Google Scholar
Ostriker, J. P. & Tassoul, J.-L. 1968, Nature, 219, 577CrossRefGoogle Scholar
Piotto, G. 2018, European Planetary Science Congress, EPSC2018-969Google Scholar
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003CrossRefGoogle Scholar
Robinson, E. L., Nather, R. E., & McGraw, J. T. 1976, ApJ, 210, 21110.1086/154819CrossRefGoogle Scholar
Robinson, E. L., Kepler, S. O., & Nather, R. E. 1982, ApJ, 259, 219CrossRefGoogle Scholar
Rolland, B., Bergeron, P., & Fontaine, G. 2018, ApJ, 857, 56CrossRefGoogle Scholar
Sauvenier-Goffin, E. 1949, Annales d’Astrophysique, 12, 39Google Scholar
Tassoul, M., Fontaine, G., & Winget, D. E. 1990, ApJS, 72, 335CrossRefGoogle Scholar
Unno, W., Osaki, Y., Ando, H., et al. 1989, Nonradial oscillations of starsGoogle Scholar
Voss, B., Koester, D., Napiwotzki, R., et al. 2007, A&A, 470, 1079Google Scholar
Walker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 102310.1086/377358CrossRefGoogle Scholar
Warner, B. & Robinson, E. L. 1972, Nature Physical Science, 239, 2CrossRefGoogle Scholar
Winget, D. E. & Kepler, S. O. 2008, ARAA 46, 157CrossRefGoogle Scholar
Winget, D. E., van Horn, H. M., Tassoul, M., et al. 1982, ApJL, 252, L65CrossRefGoogle Scholar
Winget, D. E. 1982, Ph.D. ThesisGoogle Scholar
Wu, Y. & Goldreich, P. 2001, ApJ, 546, 46910.1086/318234CrossRefGoogle Scholar
York, D. G., Adelman, J., Anderson, J. E., et al. 2000, AJ, 120, 157910.1086/301513CrossRefGoogle Scholar
Zong, W., Charpinet, S., Vauclair, G., et al. 2016, A&A, 585, A22Google Scholar
Zong, W., Charpinet, S., & Vauclair, G. 2016, A&A, 594, A46Google Scholar