Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T14:39:59.839Z Has data issue: false hasContentIssue false

White dwarfs as astrophysical probes

Published online by Cambridge University Press:  01 October 2008

Jasonjot S. Kalirai*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD, 21231 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Much of our knowledge regarding the ages of stars derives from our understanding of the Hertzsprung-Russell Diagram. The diagram is typically dominated by hydrogen burning main-sequence stars, which historically, have been used to establish our most fundamental knowledge of stellar ages and evolution. In this brief article, I highlight how deep ground and space based imaging can uncover the stellar remnants of these hydrogen burning stars, white dwarfs. We have followed up our initial discovery of several large white dwarf populations in nearby star clusters with multiobject spectrographs. The spectroscopy allows us to characterize the properties of the remnant stars (e.g., mass, temperature, and age), which are in turn used to shed new light on fundamental astrophysical problems. Specifically, we estimate the ages of the Milky Way disk and halo, provide the inputs needed to calculate the chemical evolution of galaxies, and re-iterate the important role of HB stars in producing the UV-upturn seen in elliptical galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bedin, L. R., Salaris, M., Piotto, G., King, I. R., Anderson, J., Cassisi, S., & Momany, Y. 2005, ApJL, 624, 45CrossRefGoogle Scholar
Bergeron, P., Saffer, R. A., & Liebert, J. 1992, ApJ, 394, 228CrossRefGoogle Scholar
Bergeron, P., Liebert, J., & Fulbright, M. S. 1995, AJ, 444, 810CrossRefGoogle Scholar
Castellani, M. & Castellani, V. 1993, ApJ, 407, 649CrossRefGoogle Scholar
Ferrario, L., Wickramasinghe, D., Liebert, J., & Williams, K. A. 2005, MNRAS, 361, 1131CrossRefGoogle Scholar
Hansen, B. M. S. et al. , 2004, ApJS, 155, 551CrossRefGoogle Scholar
Hansen, B. M. S., et al. 2007, ApJ, 671, 380CrossRefGoogle Scholar
Hertzsprung, E. 1905, Zeitschrift fur Wissenschaftliche Photographie, 3, 442Google Scholar
Hertzsprung, E. 1911, Publ. Astrophys. Observ. Potsdam, 22, 1Google Scholar
Kalirai, J. S., Richer, H. B., Fahlman, G. G., Cuillandre, J., Ventura, P., D'Antona, F., Bertin, E., Marconi, G., & Durrell, P. 2001a, AJ, 122, 257CrossRefGoogle Scholar
Kalirai, J. S., Richer, H. B., Fahlman, G. G., Cuillandre, J., Ventura, P., D'Antona, F., Bertin, E., Marconi, G., & Durrell, P. 2001b, AJ, 122, 266CrossRefGoogle Scholar
Kalirai, J. S., Richer, H. B., Reitzel, D., Hansen, B. M. S., Rich, R. M., Fahlman, G. G., Gibson, B. K., & von Hippel, T. 2005, ApJL, 618, L123CrossRefGoogle Scholar
Kalirai, J. S., Bergeron, P., Hansen, B. M. S., Kelson, D. D., Reitzel, D. B., Rich, R. M., & Richer, H. B. 2007, ApJ, 671, 748CrossRefGoogle Scholar
Kalirai, J. S., Hansen, B. M. S., Kelson, D. D., Reitzel, D. B., Rich, R. M., & Richer, H. B. 2008, ApJ, 676, 594CrossRefGoogle Scholar
Marigo, P. 2001, A&A, 370, 194Google Scholar
Reimers, D. 1975, Societe Royale des Sciences de Liege, Memoires, 8, 369Google Scholar
Renzini, A. & Fusi Pecci, F. 1988, ARAA, 26, 199CrossRefGoogle Scholar
Richer, H. B. et al. 2004, AJ, 127, 2771CrossRefGoogle Scholar
Richer, H. B. et al. 2006, Science, 313, 936CrossRefGoogle Scholar
Russell, H. N. 1913, The Observatory, 36, 324Google Scholar
Russell, H. N. 1913, The Observatory, 37, 165Google Scholar
Somerville, R. S. & Primack, J. R. 1999, MNRAS, 310, 1087CrossRefGoogle Scholar
Weidemann, V. 2000, A&A, 363, 647Google Scholar