Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T20:03:10.827Z Has data issue: false hasContentIssue false

White Dwarf Masses and Accretion Rates of Recurrent Novae: an X-ray Perspective

Published online by Cambridge University Press:  17 January 2013

Koji Mukai
Affiliation:
CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA email: [email protected] Also Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
Jennifer L. Sokoloski
Affiliation:
Columbia Astrophysics Laboratory, 550 W. 120th St., 1027 Pupin Hall, Columbia University, New York, NY 10027, USA
Thomas Nelson
Affiliation:
School of Physics and Astronomy, University of Minnesota, 115 Church St. SE, Minneapolis, MN 55455, USA
Gerardo J. M. Luna
Affiliation:
Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE/FCEFyN), Av. España Sur 1512, J5402DSP, San Juan, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RNe candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Balman, S. 2010, MNRAS, 404, L26Google Scholar
Byckling, K., Mukai, K., Thorstensen, J. R., & Osborne, J. P. 2010, MNRAS, 408, 2298Google Scholar
Fertig, D., Mukai, K., Nelson, T., & Cannizzo, J. 2011, PASP, in pressGoogle Scholar
Hernanz, M. & Sala, G. 2002, Science, 298, 383CrossRefGoogle Scholar
Ibarra, A., Kuulkers, E., Osborne, J. P., Page, K., Ness, J. U., Saxton, R. D., Baumgartner, W., Beckmann, V., Bode, M. F., Hernanz, M., Mukai, K., Orio, M., Sala, G., Starrfield, S., & Wynn, G. A. 2009, A&A, 497, L5Google Scholar
Kennea, J. A., Mukai, K., Sokoloski, J. L., Luna, G. J. M., Tueller, J., Markwardt, C. B., & Burrows, D. N. 2009, ApJ, 701, 1992Google Scholar
Luna, G. J. M., Sokoloski, J., Mukai, K., & Nelson, T., 2010, ATel, 3053Google Scholar
Nelson, T., Mukai, K., Orio, M., Luna, G. J. M., & Sokoloski, J. L. 2011, ApJ, 737, A7Google Scholar
Pagnotta, A., Schaefer, B. E., Xiao, L., Collazzi, A. C., & Kroll, P. 2009, AJ, 138, 1230CrossRefGoogle Scholar
Patterson, J. & Raymond, J. C. 1985, ApJ, 292, 535CrossRefGoogle Scholar
Schaefer, B. E. 2010, ApJSupp, 187, 275Google Scholar
Selvelli, P. L., Casatella, A., & Gilmozzi, R. 1992, ApJ, 393, 289Google Scholar
Takei, D., Ness, J. U., Tsujimoto, M., Kitamoto, S., Drake, J. J., Osborne, J. P., Takahashi, H., & Kinugasa, K. 2011, PASJ, in pressGoogle Scholar