Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T06:19:25.431Z Has data issue: false hasContentIssue false

Where are the Eddington-limited starbursts? Gravitational lensing provides a way forward for sub-kiloparsec views of star formation

Published online by Cambridge University Press:  04 March 2024

Patrick S. Kamieneski*
Affiliation:
Arizona State University
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the past decade, submillimeter surveys have been employed to define samples of gravitationally-lensed dusty star-forming galaxies (DSFGs) at z ∼ 1 − 4. These extreme objects () appear to form stars prodigiously at rates of . Using all-sky Planck and WISE surveys, and wide-area Herschel surveys, we have identified the PASSAGES sample, with some of the rarest hyper-luminous IR galaxies ever discovered. We have found that their globally-averaged star formation surface densities are always sub-Eddington, typically by an order of magnitude. This may suggest that our understanding of how radiation pressure from massive stars disrupts the collapse of molecular clouds (thereby quenching star formation) is flawed—or simply that smaller physical resolutions are necessary. With the aid of lensing, we can now capture the source-plane distribution of star formation at ∼ 100pc scales, letting us identify isolated super-Eddington regions where quenching is occurring.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Andrews, B. H. & Thompson, T. A. 2011, Assessing Radiation Pressure as a Feedback Mechanism in Star-forming Galaxies. ApJ, 727(2), 97.CrossRefGoogle Scholar
Bakx, T. J. L. C., Dannerbauer, H., Frayer, D., Eales, S. A., Pérez-Fournon, I., Cai, Z. Y., Clements, D. L., De Zotti, G., González-Nuevo, J., Ivison, R. J., Lapi, A., Michaɫowski, M. J., Negrello, M., Serjeant, S., Smith, M. W. L., Temi, P., Urquhart, S., & van der Werf, P. 2020,a IRAM 30-m-EMIR redshift search of z = 3-4 lensed dusty starbursts selected from the HerBS sample. MNRAS, 496a(2), 2372–2390.Google Scholar
Bakx, T. J. L. C., Eales, S., & Amvrosiadis, A. 2020,b A search for the lenses in the Herschel Bright Sources (HerBS) sample. MNRAS, 493b(3), 4276–4293.Google Scholar
Barcos-Muñoz, L., Leroy, A. K., Evans, A. S., Condon, J., Privon, G. C., Thompson, T. A., Armus, L., Daz-Santos, T., Mazzarella, J. M., Meier, D. S., Momjian, E., Murphy, E. J., Ott, J., Sanders, D. B., Schinnerer, E., Stierwalt, S., Surace, J. A., & Walter, F. 2017, A 33 GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum. ApJ, 843(2), 117.CrossRefGoogle Scholar
Barcos-Muñoz, L., Leroy, A. K., Evans, A. S., Privon, G. C., Armus, L., Condon, J., Mazzarella, J. M., Meier, D. S., Momjian, E., Murphy, E. J., Ott, J., Reichardt, A., Sakamoto, K., Sanders, D. B., Schinnerer, E., Stierwalt, S., Surace, J. A., Thompson, T. A., & Walter, F. 2015, High-resolution Radio Continuum Measurements of the Nuclear Disks of Arp 220. ApJ, 799(1), 10.CrossRefGoogle Scholar
Berman, D. A., Yun, M. S., Harrington, K. C., Kamieneski, P., Lowenthal, J., Frye, B. L., Wang, Q. D., Wilson, G. W., Aretxaga, I., Chavez, M., Cybulski, R., De la Luz, V., Erickson, N., Ferrusca, D., Hughes, D. H., Montaña, A., Narayanan, G., Sánchez-Argüelles, D., Schloerb, F. P., Souccar, K., Terlevich, E., Terlevich, R., & Zavala, J. A. 2022, PASSAGES: the Large Millimeter Telescope and ALMA observations of extremely luminous high-redshift galaxies identified by the Planck. MNRAS, 515(3), 39113937.CrossRefGoogle Scholar
Blain, A. W. 1996, Galaxy-galaxy gravitational lensing in the millimetre/submillimetre waveband. MNRAS, 283, 13401348.CrossRefGoogle Scholar
Bussmann, R. S., Pérez-Fournon, I., Amber, S., Calanog, J., Gurwell, M. A., Dannerbauer, H., De Bernardis, F., Fu, H., Harris, A. I., Krips, M., Lapi, A., Maiolino, R., Omont, A., Riechers, D., Wardlow, J., Baker, A. J., Birkinshaw, M., Bock, J., Bourne, N., Clements, D. L., Cooray, A., De Zotti, G., Dunne, L., Dye, S., Eales, S., Farrah, D., Gavazzi, R., González Nuevo, J., Hopwood, R., Ibar, E., Ivison, R. J., Laporte, N., Maddox, S., Martnez-Navajas, P., Michalowski, M., Negrello, M., Oliver, S. J., Roseboom, I. G., Scott, D., Serjeant, S., Smith, A. J., Smith, M., Streblyanska, A., Valiante, E., van der Werf, P., Verma, A., Vieira, J. D., Wang, L., & Wilner, D. 2013, Gravitational Lens Models Based on Submillimeter Array Imaging of Herschel-selected Strongly Lensed Sub-millimeter Galaxies at z > 1.5. ApJ, 779, 25.+1.5.+ApJ,+779,+25.>Google Scholar
Bussmann, R. S., Riechers, D., Fialkov, A., Scudder, J., Hayward, C. C., Cowley, W. I., Bock, J., Calanog, J., Chapman, S. C., Cooray, A., De Bernardis, F., Farrah, D., Fu, H., Gavazzi, R., Hopwood, R., Ivison, R. J., Jarvis, M., Lacey, C., Loeb, A., Oliver, S. J., Pérez-Fournon, I., Rigopoulou, D., Roseboom, I. G., Scott, D., Smith, A. J., Vieira, J. D., Wang, L., & Wardlow, J. 2015, HerMES: ALMA Imaging of Herschel-selected Dusty Star-forming Galaxies. ApJ, 812, 43.CrossRefGoogle Scholar
Cañameras, R., Nesvadba, N., Kneissl, R., Frye, B., Gavazzi, R., Koenig, S., Le Floc’h, E., Limousin, M., Oteo, I., & Scott, D. 2017, Planck’s dusty GEMS. IV. Star formation and feedback in a maximum starburst at z = 3 seen at 60-pc resolution. A&A, 604, A117.Google Scholar
Cañameras, R., Nesvadba, N. P. H., Guery, D., McKenzie, T., König, S., Petitpas, G., Dole, H., Frye, B., Flores-Cacho, I., Montier, L., Negrello, M., Beelen, A., Boone, F., Dicken, D., Lagache, G., Le Floc’h, E., Altieri, B., Béthermin, M., Chary, R., de Zotti, G., Giard, M., Kneissl, R., Krips, M., Malhotra, S., Martinache, C., Omont, A., Pointecouteau, E., Puget, J.-L., Scott, D., Soucail, G., Valtchanov, I., Welikala, N., & Yan, L. 2015, Planck’s dusty GEMS: The brightest gravitationally lensed galaxies discovered with the Planck all-sky survey. A&A, 581, A105.Google Scholar
Casey, C. M., Zavala, J. A., Manning, S. M., Aravena, M., Béthermin, M., Caputi, K. I., Champagne, J. B., Clements, D. L., Drew, P., Finkelstein, S. L., Fujimoto, S., Hayward, C. C., Dekel, A. M., Kokorev, V., Lagos, C. d. P., Long, A. S., Magdis, G. E., Man, A. W. S., Mitsuhashi, I., Popping, G., Spilker, J., Staguhn, J., Talia, M., Toft, S., Treister, E., Weaver, J. R., & Yun, M. 2021, Mapping Obscuration to Reionization with ALMA (MORA): 2 mm Efficiently Selects the Highest-redshift Obscured Galaxies. ApJ, 923(2), 215.CrossRefGoogle Scholar
Federrath, C. & Klessen, R. S. 2012, The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations. ApJ, 761(2), 156.CrossRefGoogle Scholar
Fian, C., Mediavilla, E., Jiménez-Vicente, J., Motta, V., Muñoz, J. A., Chelouche, D., Goméz-Alvarez, P., Rojas, K., & Hanslmeier, A. 2021, Revealing the structure of the lensed quasar Q 0957+561. I. Accretion disk size. A&A, 654, A70.Google Scholar
Fujimoto, S., Ouchi, M., Shibuya, T., & Nagai, H. 2017, Demonstrating a New Census of Infrared Galaxies with ALMA (DANCING-ALMA). I. FIR Size and Luminosity Relation at z = 0-6 Revealed with 1034 ALMA Sources. ApJ, 850, 83.CrossRefGoogle Scholar
González-Nuevo, J., Lapi, A., Fleuren, S., Bressan, S., Danese, L., De Zotti, G., Negrello, M., Cai, Z. Y., Fan, L., Sutherland, W., Baes, M., Baker, A. J., Clements, D. L., Cooray, A., Dannerbauer, H., Dunne, L., Dye, S., Eales, S., Frayer, D. T., Harris, A. I., Ivison, R., Jarvis, M. J., Michaɫowski, M. J., López-Caniego, M., Rodighiero, G., Rowlands, K., Serjeant, S., Scott, D., van der Werf, P., Auld, R., Buttiglione, S., Cava, A., Dariush, A., Fritz, J., Hopwood, R., Ibar, E., Maddox, S., Pascale, E., Pohlen, M., Rigby, E., Smith, D., & Temi, P. 2012, Herschel-ATLAS: Toward a Sample of 1000 Strongly Lensed Galaxies. ApJ, 749(1), 65.Google Scholar
Gralla, M. B., Marriage, T. A., Addison, G., Baker, A. J., Bond, J. R., Crichton, D., Datta, R., Devlin, M. J., Dunkley, J., Dünner, R., Fowler, J., Gallardo, P. A., Hall, K., Halpern, M., Hasselfield, M., Hilton, M., Hincks, A. D., Huffenberger, K. M., Hughes, J. P., Kosowsky, A., López-Caraballo, C. H., Louis, T., Marsden, D., Moodley, K., Niemack, M. D., Page, L. A., Partridge, B., Rivera, J., Sievers, J. L., Staggs, S., Su, T., Swetz, D., & Wollack, E. J. 2020, Atacama Cosmology Telescope: Dusty Star-forming Galaxies and Active Galactic Nuclei in the Equatorial Survey. ApJ, 893(2), 104.CrossRefGoogle Scholar
Harrington, K. C., Weiss, A., Yun, M. S., Magnelli, B., Sharon, C. E., Leung, T. K. D., Vishwas, A., Wang, Q. D., Frayer, D. T., Jiménez-Andrade, E. F., Liu, D., Garca, P., Romano-Daz, E., Frye, B. L., Jarugula, S., Bădescu, T., Berman, D., Dannerbauer, H., Daz-Sánchez, A., Grassitelli, L., Kamieneski, P., Kim, W. J., Kirkpatrick, A., Lowenthal, J. D., Messias, H., Puschnig, J., Stacey, G. J., Torne, P., & Bertoldi, F. 2021, Turbulent Gas in Lensed Planck-selected Starbursts at z ∼ 1-3.5. ApJ, 908(1), 95.Google Scholar
Harrington, K. C., Yun, M. S., Cybulski, R., Wilson, G. W., Aretxaga, I., Chavez, M., De la Luz, V., Erickson, N., Ferrusca, D., Gallup, A. D., Hughes, D. H., Montaña, A., Narayanan, G., Sánchez-Argüelles, D., Schloerb, F. P., Souccar, K., Terlevich, E., Terlevich, R., Zeballos, M., & Zavala, J. A. 2016, Early science with the Large Millimeter Telescope: observations of extremely luminous high-z sources identified by Planck. MNRAS, 458, 43834399.CrossRefGoogle Scholar
Hezaveh, Y. D., Marrone, D. P., & Holder, G. P. 2012, Size Bias and Differential Lensing of Strongly Lensed, Dusty Galaxies Identified in Wide-Field Surveys. ApJ, 761, 20.CrossRefGoogle Scholar
Hodge, J. A., Smail, I., Walter, F., da Cunha, E., Swinbank, A. M., Rybak, M., Venemans, B., Brandt, W. N., Calistro Rivera, G., Chapman, S. C., Chen, C.-C., Cox, P., Dannerbauer, H., Decarli, R., Greve, T. R., Knudsen, K. K., Menten, K. M., Schinnerer, E., Simpson, J. M., van der Werf, P., Wardlow, J. L., & Weiss, A. 2019, ALMA Reveals Potential Evidence for Spiral Arms, Bars, and Rings in High-redshift Submillimeter Galaxies. ApJ, 876, 130.CrossRefGoogle Scholar
Inoue, K. T. 2016, On the origin of the flux ratio anomaly in quadruple lens systems. MNRAS, 461(1), 164175.CrossRefGoogle Scholar
Jullo, E. & Kneib, J.-P. 2009, Multiscale cluster lens mass mapping - I. Strong lensing modelling. MNRAS, 395, 1319–1332.Google Scholar
Jullo, E., Kneib, J.-P., Limousin, M., Elasdóttir, Á., Marshall, P. J., & Verdugo, T. 2007, A Bayesian approach to strong lensing modelling of galaxy clusters. New Journal of Physics, 9, 447.CrossRefGoogle Scholar
Kamieneski, P. S., Yun, M. S., Harrington, K. C., Lowenthal, J. D., Wang, Q. D., Frye, B. L., Jimenez-Andrade, E. F., Vishwas, A., Cooper, O., Pascale, M., Foo, N., Berman, D., Englert, A., & Garcia Diaz, C. 2023, PASSAGES: the wide-ranging, extreme intrinsic properties of Planck-selected, lensed dusty star-forming galaxies. arXiv e-prints, arXiv:2301.09746.Google Scholar
Kennicutt, Robert C., J. 1998, The Global Schmidt Law in Star-forming Galaxies. ApJ, 498(2), 541552.CrossRefGoogle Scholar
Kneib, J.-P., Ellis, R. S., Smail, I., Couch, W. J., & Sharples, R. M. 1996, Hubble Space Telescope Observations of the Lensing Cluster Abell 2218. ApJ, 471, 643.CrossRefGoogle Scholar
Kormann, R., Schneider, P., & Bartelmann, M. 1994, Isothermal elliptical gravitational lens models. A&A, 284, 285299.Google Scholar
Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, A Universal, Local Star Formation Law in Galactic Clouds, nearby Galaxies, High-redshift Disks, and Starbursts. ApJ, 745(1), 69.CrossRefGoogle Scholar
Krumholz, M. R. & McKee, C. F. 2005, A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies. ApJ, 630, 250268.CrossRefGoogle Scholar
Lammers, C., Hill, R., Lim, S., Scott, D., Cañameras, R., & Dole, H. 2022, Candidate high-redshift protoclusters and lensed galaxies in the Planck list of high-z sources overlapping with Herschel-SPIRE imaging. MNRAS, 514(4), 50045023.CrossRefGoogle Scholar
Laureijs, R., Amiaux, J., Arduini, S., Auguères, J. L., Brinchmann, J., Cole, R., Cropper, M., Dabin, C., Duvet, L., Ealet, A., & et al. 2011, Euclid Definition Study Report. arXiv e-prints, arXiv:1110.3193.Google Scholar
Lonsdale, C. J., Farrah, D., & Smith, H. E. 2006, Ultraluminous Infrared Galaxies, 285. Springer-Verlag.CrossRefGoogle Scholar
Mao, S. & Schneider, P. 1998, Evidence for substructure in lens galaxies? MNRAS, 295, 587.Google Scholar
McKee, C. F. & Ostriker, E. C. 2007, Theory of Star Formation. ARA&A, 45(1), 565687.Google Scholar
Murray, N. 2011, Star Formation Efficiencies and Lifetimes of Giant Molecular Clouds in the Milky Way. ApJ, 729(2), 133.CrossRefGoogle Scholar
Murray, N., Quataert, E., & Thompson, T. A. 2005, On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds. ApJ, 618(2), 569585.CrossRefGoogle Scholar
Negrello, M., Amber, S., Amvrosiadis, A., Cai, Z.-Y., Lapi, A., Gonzalez-Nuevo, J., De Zotti, G., Furlanetto, C., Maddox, S. J., Allen, M., Bakx, T., Bussmann, R. S., Cooray, A., Covone, G., Danese, L., Dannerbauer, H., Fu, H., Greenslade, J., Gurwell, M., Hopwood, R., Koopmans, L. V. E., Napolitano, N., Nayyeri, H., Omont, A., Petrillo, C. E., Riechers, D. A., Serjeant, S., Tortora, C., Valiante, E., Verdoes Kleijn, G., Vernardos, G., Wardlow, J. L., Baes, M., Baker, A. J., Bourne, N., Clements, D., Crawford, S. M., Dye, S., Dunne, L., Eales, S., Ivison, R. J., Marchetti, L., Michaɫowski, M. J., Smith, M. W. L., Vaccari, M., & van der Werf, P. 2017, The Herschel-ATLAS: a sample of 500 μm-selected lensed galaxies over 600 deg2 . MNRAS, 465, 35583580.CrossRefGoogle Scholar
Negrello, M., Hopwood, R., De Zotti, G., Cooray, A., Verma, A., Bock, J., Frayer, D. T., Gurwell, M. A., Omont, A., Neri, R., Dannerbauer, H., Leeuw, L. L., Barton, E., Cooke, J., Kim, S., da Cunha, E., Rodighiero, G., Cox, P., Bonfield, D. G., Jarvis, M. J., Serjeant, S., Ivison, R. J., Dye, S., Aretxaga, I., Hughes, D. H., Ibar, E., Bertoldi, F., Valtchanov, I., Eales, S., Dunne, L., Driver, S. P., Auld, R., Buttiglione, S., Cava, A., Grady, C. A., Clements, D. L., Dariush, A., Fritz, J., Hill, D., Hornbeck, J. B., Kelvin, L., Lagache, G., Lopez-Caniego, M., Gonzalez-Nuevo, J., Maddox, S., Pascale, E., Pohlen, M., Rigby, E. E., Robotham, A., Simpson, C., Smith, D. J. B., Temi, P., Thompson, M. A., Woodgate, B. E., York, D. G., Aguirre, J. E., Beelen, A., Blain, A., Baker, A. J., Birkinshaw, M., Blundell, R., Bradford, C. M., Burgarella, D., Danese, L., Dunlop, J. S., Fleuren, S., Glenn, J., Harris, A. I., Kamenetzky, J., Lupu, R. E., Maddalena, R. J., Madore, B. F., Maloney, P. R., Matsuhara, H., Michaɫowski, M. J., Murphy, E. J., Naylor, B. J., Nguyen, H., Popescu, C., Rawlings, S., Rigopoulou, D., Scott, D., Scott, K. S., Seibert, M., Smail, I., Tuffs, R. J., Vieira, J. D., van der Werf, P. P., & Zmuidzinas, J. 2010, The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies. Science, 330, 800.CrossRefGoogle ScholarPubMed
Negrello, M., Perrotta, F., González-Nuevo, J., Silva, L., de Zotti, G., Granato, G. L., Baccigalupi, C., & Danese, L. 2007, Astrophysical and cosmological information from large-scale submillimetre surveys of extragalactic sources. MNRAS, 377, 15571568.CrossRefGoogle Scholar
Nierenberg, A. M., Gilman, D., Treu, T., Brammer, G., Birrer, S., Moustakas, L., Agnello, A., Anguita, T., Fassnacht, C. D., Motta, V., Peter, A. H. G., & Sluse, D. 2020, Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism. MNRAS, 492(4), 53145335.CrossRefGoogle Scholar
Nierenberg, A. M., Treu, T., Brammer, G., Peter, A. H. G., Fassnacht, C. D., Keeton, C. R., Kochanek, C. S., Schmidt, K. B., Sluse, D., & Wright, S. A. 2017, Probing dark matter substructure in the gravitational lens HE 0435-1223 with the WFC3 grism. MNRAS, 471(2), 22242236.CrossRefGoogle Scholar
Padoan, P. & Nordlund, Å. 2011, The Star Formation Rate of Supersonic Magnetohydrodynamic Turbulence. ApJ, 730(1), 40.CrossRefGoogle Scholar
Pereira-Santaella, M., Colina, L., Garca-Burillo, S., Lamperti, I., González-Alfonso, E., Perna, M., Arribas, S., Alonso-Herrero, A., Aalto, S., Combes, F., Labiano, A., Piqueras-López, J., Rigopoulou, D., & van der Werf, P. 2021, Physics of ULIRGs with MUSE and ALMA: The PUMA project. II. Are local ULIRGs powered by AGN? The subkiloparsec view of the 220 GHz continuum. A&A, 651, A42.CrossRefGoogle Scholar
Scoville, N. 2003, Starburst and AGN Connections and Models. Journal of Korean Astronomical Society, 36(3), 167175.CrossRefGoogle Scholar
Serjeant, S. 2014, Up to 100,000 Reliable Strong Gravitational Lenses in Future Dark Energy Experiments. ApJL, 793, L10.CrossRefGoogle Scholar
Shibuya, T., Ouchi, M., & Harikane, Y. 2015, Morphologies of ∼ 190,000 Galaxies at z = 0-10 Revealed with HST Legacy Data. I. Size Evolution. ApJS, 219, 15.Google Scholar
Simpson, J. M., Smail, I., Swinbank, A. M., Almaini, O., Blain, A. W., Bremer, M. N., Chapman, S. C., Chen, C.-C., Conselice, C., Coppin, K. E. K., Danielson, A. L. R., Dunlop, J. S., Edge, A. C., Farrah, D., Geach, J. E., Hartley, W. G., Ivison, R. J., Karim, A., Lani, C., Ma, C. J., Meijerink, R., Michaɫowski, M. J., Mortlock, A., Scott, D., Simpson, C. J., Spaans, M., Thomson, A. P., van Kampen, E., & van der Werf, P. P. 2015, The SCUBA-2 Cosmology Legacy Survey: ALMA Resolves the Rest-frame Far-infrared Emission of Sub-millimeter Galaxies. ApJ, 799(1), 81.CrossRefGoogle Scholar
Song, Y., Linden, S. T., Evans, A. S., Barcos-Muñoz, L., Murphy, E. J., Momjian, E., Daz-Santos, T., Larson, K. L., Privon, G. C., Huang, X., Armus, L., Mazzarella, J. M., U, V., Inami, H., Charmandaris, V., Ricci, C., Emig, K. L., McKinney, J., Yoon, I., Kunneriath, D., Lai, T. S. Y., Rodas-Quito, E. E., Saravia, A., Gao, T., Meynardie, W., & Sanders, D. B. 2022, Characterizing Compact 15-33 GHz Radio Continuum Sources in Local U/LIRGs. ApJ, 940(1), 52.Google Scholar
Spilker, J. S., Marrone, D. P., Aravena, M., Béthermin, M., Bothwell, M. S., Carlstrom, J. E., Chapman, S. C., Crawford, T. M., de Breuck, C., Fassnacht, C. D., Gonzalez, A. H., Greve, T. R., Hezaveh, Y., Litke, K., Ma, J., Malkan, M., Rotermund, K. M., Strandet, M., Vieira, J. D., Weiss, A., & Welikala, N. 2016, ALMA Imaging and Gravitational Lens Models of South Pole TelescopeSelected Dusty, Star-Forming Galaxies at High Redshifts. ApJ, 826, 112.CrossRefGoogle Scholar
Su, T., Marriage, T. A., Asboth, V., Baker, A. J., Bond, J. R., Crichton, D., Devlin, M. J., Dünner, R., Farrah, D., Frayer, D. T., Gralla, M. B., Hall, K., Halpern, M., Harris, A. I., Hilton, M., Hincks, A. D., Hughes, J. P., Niemack, M. D., Page, L. A., Partridge, B., Rivera, J., Scott, D., Sievers, J. L., Thornton, R. J., Viero, M. P., Wang, L., Wollack, E. J., & Zemcov, M. 2017, On the redshift distribution and physical properties of ACT-selected DSFGs. MNRAS, 464, 968984.CrossRefGoogle ScholarPubMed
Thompson, T. A., Quataert, E., & Murray, N. 2005, Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling. ApJ, 630(1), 167185.CrossRefGoogle Scholar
Trombetti, T., Burigana, C., Bonato, M., Herranz, D., De Zotti, G., Negrello, M., Galluzzi, V., & Massardi, M. 2021, Search for candidate strongly lensed dusty galaxies in the Planck satellite catalogues. A&A, 653, A151.Google Scholar
Utomo, D., Sun, J., Leroy, A. K., Kruijssen, J. M. D., Schinnerer, E., Schruba, A., Bigiel, F., Blanc, G. A., Chevance, M., Emsellem, E., Herrera, C., Hygate, A. P. S., Kreckel, K., Ostriker, E. C., Pety, J., Querejeta, M., Rosolowsky, E., Sandstrom, K. M., & Usero, A. 2018, Star Formation Efficiency per Free-fall Time in nearby Galaxies. ApJL, 861(2), L18.CrossRefGoogle Scholar
Vegetti, S., Koopmans, L. V. E., Auger, M. W., Treu, T., & Bolton, A. S. 2014, Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses. MNRAS, 442(3), 20172035.CrossRefGoogle Scholar
Vegetti, S., Lagattuta, D. J., McKean, J. P., Auger, M. W., Fassnacht, C. D., & Koopmans, L. V. E. 2012, Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature, 481(7381), 341343.CrossRefGoogle ScholarPubMed
Vieira, J. D., Crawford, T. M., Switzer, E. R., Ade, P. A. R., Aird, K. A., Ashby, M. L. N., Benson, B. A., Bleem, L. E., Brodwin, M., Carlstrom, J. E., Chang, C. L., Cho, H. M., Crites, A. T., de Haan, T., Dobbs, M. A., Everett, W., George, E. M., Gladders, M., Hall, N. R., Halverson, N. W., High, F. W., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Joy, M., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Lueker, M., Marrone, D. P., McIntyre, V., McMahon, J. J., Mehl, J., Meyer, S. S., Mohr, J. J., Montroy, T. E., Padin, S., Plagge, T., Pryke, C., Reichardt, C. L., Ruhl, J. E., Schaffer, K. K., Shaw, L., Shirokoff, E., Spieler, H. G., Stalder, B., Staniszewski, Z., Stark, A. A., Vanderlinde, K., Walsh, W., Williamson, R., Yang, Y., Zahn, O., & Zenteno, A. 2010, Extragalactic Millimeter-wave Sources in South Pole Telescope Survey Data: Source Counts, Catalog, and Statistics for an 87 Square-degree Field. ApJ, 719(1), 763783.CrossRefGoogle Scholar
Wardlow, J. L., Cooray, A., De Bernardis, F., Amblard, A., Arumugam, V., Aussel, H., Baker, A. J., Béthermin, M., Blundell, R., Bock, J., Boselli, A., Bridge, C., Buat, V., Burgarella, D., Bussmann, R. S., Cabrera-Lavers, A., Calanog, J., Carpenter, J. M., Casey, C. M., Castro-Rodrguez, N., Cava, A., Chanial, P., Chapin, E., Chapman, S. C., Clements, D. L., Conley, A., Cox, P., Dowell, C. D., Dye, S., Eales, S., Farrah, D., Ferrero, P., Franceschini, A., Frayer, D. T., Frazer, C., Fu, H., Gavazzi, R., Glenn, J., González Solares, E. A., Griffin, M., Gurwell, M. A., Harris, A. I., Hatziminaoglou, E., Hopwood, R., Hyde, A., Ibar, E., Ivison, R. J., Kim, S., Lagache, G., Levenson, L., Marchetti, L., Marsden, G., Martinez-Navajas, P., Negrello, M., Neri, R., Nguyen, H. T., O’Halloran, B., Oliver, S. J., Omont, A., Page, M. J., Panuzzo, P., Papageorgiou, A., Pearson, C. P., Pérez-Fournon, I., Pohlen, M., Riechers, D., Rigopoulou, D., Roseboom, I. G., Rowan-Robinson, M., Schulz, B., Scott, D., Scoville, N., Seymour, N., Shupe, D. L., Smith, A. J., Streblyanska, A., Strom, A., Symeonidis, M., Trichas, M., Vaccari, M., Vieira, J. D., Viero, M., Wang, L., Xu, C. K., Yan, L., & Zemcov, M. 2013, HerMES: Candidate Gravitationally Lensed Galaxies and Lensing Statistics at Submillimeter Wavelengths. ApJ, 762, 59.CrossRefGoogle Scholar
Weiss, A., De Breuck, C., Marrone, D. P., Vieira, J. D., Aguirre, J. E., Aird, K. A., Aravena, M., Ashby, M. L. N., Bayliss, M., Benson, B. A., Béthermin, M., Biggs, A. D., Bleem, L. E., Bock, J. J., Bothwell, M., Bradford, C. M., Brodwin, M., Carlstrom, J. E., Chang, C. L., Chapman, S. C., Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Downes, T. P., Fassnacht, C. D., George, E. M., Gladders, M. D., Gonzalez, A. H., Greve, T. R., Halverson, N. W., Hezaveh, Y. D., High, F. W., Holder, G. P., Holzapfel, W. L., Hoover, S., Hrubes, J. D., Husband, K., Keisler, R., Lee, A. T., Leitch, E. M., Lueker, M., Luong-Van, D., Malkan, M., McIntyre, V., McMahon, J. J., Mehl, J., Menten, K. M., Meyer, S. S., Murphy, E. J., Padin, S., Plagge, T., Reichardt, C. L., Rest, A., Rosenman, M., Ruel, J., Ruhl, J. E., Schaffer, K. K., Shirokoff, E., Spilker, J. S., Stalder, B., Staniszewski, Z., Stark, A. A., Story, K., Vanderlinde, K., Welikala, N., & Williamson, R. 2013, ALMA Redshifts of Millimeter-selected Galaxies from the SPT Survey: The Redshift Distribution of Dusty Star-forming Galaxies. ApJ, 767, 88.CrossRefGoogle Scholar
Wilson, G. W., Abi-Saad, S., Ade, P., Aretxaga, I., Austermann, J., Ban, Y., Bardin, J., Beall, J., Berthoud, M., Bryan, S., Bussan, J., Castillo, E., Chavez, M., Contente, R., DeNigris, N. S., Dober, B., Eiben, M., Ferrusca, D., Fissel, L., Gao, J., Golec, J. E., Golina, R., Gomez, A., Gordon, S., Gutermuth, R., Hilton, G., Hosseini, M., Hubmayr, J., Hughes, D., Kuczarski, S., Lee, D., Lunde, E., Ma, Z., Mani, H., Mauskopf, P., McCrackan, M., McKenney, C., McMahon, J., Novak, G., Pisano, G., Pope, A., Ralston, A., Rodriguez, I., Sánchez-Argüelles, D., Schloerb, F. P., Simon, S., Sinclair, A., Souccar, K., Torres Campos, A., Tucker, C., Ullom, J., Van Camp, E., Van Lanen, J., Velazquez, M., Vissers, M., Weeks, E., & Yun, M. S. The TolTEC camera: an overview of the instrument and in-lab testing results. In Zmuidzinas, J. & Gao, J.-R., editors, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X 2020, volume 11453 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 1145302.CrossRefGoogle Scholar