Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T23:26:56.191Z Has data issue: false hasContentIssue false

What we talk about when we talk about fields

Published online by Cambridge University Press:  01 July 2015

Ewan Cameron*
Affiliation:
Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, United Kingdom email: [email protected] website: astrostatistics.wordpress.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In astronomical and cosmological studies one often wishes to infer some properties of an infinite-dimensional field indexed within a finite-dimensional metric space given only a finite collection of noisy observational data. Bayesian inference offers an increasingly-popular strategy to overcome the inherent ill-posedness of this signal reconstruction challenge. However, there remains a great deal of confusion within the astronomical community regarding the appropriate mathematical devices for framing such analyses and the diversity of available computational procedures for recovering posterior functionals. In this brief research note I will attempt to clarify both these issues from an “applied statistics” perpective, with insights garnered from my post-astronomy experiences as a computational Bayesian / epidemiological geostatistician.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bertschinger, E. 1987, ApJ 323 L103L106CrossRefGoogle Scholar
Burr, D. & Doss, H. 2005, J. Am. Statist. Assoc. 100 242251CrossRefGoogle Scholar
Cotter, S. L., Dashti, M., Robinson, J. C., & Stuart, A. M. 2009, Inverse Probl., 25, 115008CrossRefGoogle Scholar
De Iorio, M., Johnson, W. O., Müller, P., & Rosner, G. L. 2009, Biometrics 65 762771CrossRefGoogle Scholar
Del Moral, P., Doucet, A., & Jasra, A. 2007, ‘Sequential Monte Carlo for Bayesian Computation’ in Bayesian Statistics 8, Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Smith, A.F.M. & West, M., eds., OUP, 134Google Scholar
Doucet, A. 2010, ‘A Note on Efficient Conditional Simulation of Gaussian Distributions’, Departments of Computer Science and Statistics, University of British ColumbiaGoogle Scholar
Enßlin, T. A., Frommert, M., & Kitaura, F. S. 2009, Phys. Rev. D, 80, 105005Google Scholar
Handcock, M. S. & Stein, M. L. 1993, Technometrics 35 403410Google Scholar
Gething, P. W., Patil, A. P., & Hay, S. I. 2010, PLOS Computat. Biol., 6, e1000724CrossRefGoogle Scholar
Hajian, A. 2007, Phys. Rev. D., 75, 083525CrossRefGoogle Scholar
Hensman, J., Fusi, N., & Lawrence, N. D. 2013, ‘Gaussian Processes for Big Data’ in Association for Uncertainty in Artificial Intelligence, UAI2013, 244Google Scholar
Hoffman, Y. & Ribak, E. 1991, ApJ 380 L5L8CrossRefGoogle Scholar
Jasche, J. & Kitaura, F. S. 2010, MNRAS 407 2942CrossRefGoogle Scholar
Kitching, T. D. & Taylor, A. N. 2011, MNRAS 410 16771686Google Scholar
Lakshminarayanan, B., Roy, D. M., & Teh, Y. W. 2013, ‘Top-down Particle Filtering for Bayesian Decision Trees’ in International Conference on Machine Learning, ICML2013Google Scholar
Lingren, F., Rue, H., & Lindström, J. 2011, J. R. Statist. Soc. B 73 423498CrossRefGoogle Scholar
Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. 2003, PNAS 100 1532415328Google Scholar
Neal, R. M. 1997, ‘Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification’, Tech. Rep. 9702, Department of Statistics, University of TorontoGoogle Scholar
O'Hagan, A. 1978, J. R. Statist. Soc. B 40 142Google Scholar
Omre, H. 1987, Math. Geol. 19 2539CrossRefGoogle Scholar
Rasmussen, C. E. & Williams, C. K. I. 1996, ‘Gaussian Processes for Regression’ in Advances in Neural Information Processing Systems 8, eds. Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., MIT Press, 514520Google Scholar
Rue, Y., Martino, S., & Chopin, N. 2009, J. R. Statist. Soc. B 71 319392Google Scholar
Särkkä, S., Solin, A., & Hartikainen, J. 2014, ‘Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing', to appear in The IEEE Signal Processing MagazineCrossRefGoogle Scholar
Skilling, J. 1998, J. Microscop. 190 2836Google Scholar
Soubeyrand, S., Carpentier, F., Guiton, F., & Klein, E. K. 2013, Stat. Appl. Genet. Mol. Biol. 12 1737CrossRefGoogle Scholar
Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2009, Phys. Rev. D, 70, 083511Google Scholar
Wilson, S. P. & Yoon, J. 2010, preprint(arXiv:1011.4018)Google Scholar