Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T01:38:14.613Z Has data issue: false hasContentIssue false

What Microwave Astronomical Spectroscopy can tell you about the Carriers of the DIBs

Published online by Cambridge University Press:  21 February 2014

H. Liszt
Affiliation:
Notional Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VAUSA22903
R. Lucas
Affiliation:
Institut de Plantologie et d.Astrophysique de Grenoble (UMR 5274)BP 53 F-38041 Grenoble Cedex 9, France
J. Pety
Affiliation:
Institut de Radioastronomie Millimétrique, 300 Rue de la PiscineF-38406 Saint Martin d'Hères, France Obs. de Paris, 61 av. de l'Observatoire, 75014, Paris, France
M. Gerin
Affiliation:
Obs. de Paris, 61 av. de l'Observatoire, 75014, Paris, France LERMA/LRA, Ecole Normale Suprieure, 24 rue Lhomond, 75005 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Astronomical microwave spectroscopy has greatly broadened the inventory of identifiable chemical species in diffuse molecular gas and is an increasingly effective way to measure the abundances of polar molecules that may be candidate diffuse interstellar band carriers. Here we review some recent developments that hold new promise for chemical abundance determinations. We summarize and categorize the molecular inventory that has accrued in the past twenty years from microwave observations of diffuse clouds and we present summary tables of the molecular abundances within various chemical families in both dark and diffuse molecular gas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Cordiner, M. A. & Sarre, P. J. 2007, A&A, 472, 537Google Scholar
Federman, S. R., Strom, C. J., Lambert, D. L., Cardelli, J. A., Smith, V. V., & Joseph, C. L. 1994, ApJ, 424, 772CrossRefGoogle Scholar
Gerin, M., Kaźmierczak, M., Jastrzebska, M., Falgarone, E., Hily-Blant, P., Godard, B., & de Luca, M. 2011, A&A, 525, A116Google Scholar
Indriolo, N., Neufeld, D. A., Gerin, M., Geballe, T. R., Black, J. H., Menten, K. M., & Goicoechea, J. R. 2012, ApJ, 758, 83CrossRefGoogle Scholar
Liszt, H. & Lucas, R. 2001, A&A, 370, 576Google Scholar
Liszt, H., Lucas, R., & Pety, J. 2006, A&A, 448, 253Google Scholar
Liszt, H., Sonnentrucker, P., Cordiner, M., & Gerin, M. 2012, ApJ Letters, 753, L28Google Scholar
Liszt, H. S. 2012, A&A, 538, A27Google Scholar
Liszt, H. S. & Lucas, R. 1996, A&A, 314, 917Google Scholar
Liszt, H. S. & Lucas, R. 1998, A&A, 339, 561Google Scholar
Liszt, H. S. & Pety, J. 2012, A&A, 541, A58Google Scholar
Liszt, H. S., Pety, J., & Lucas, R. 2010, A&A, 518, A45Google Scholar
Lucas, R. & Liszt, H. S. 1996, A&A, 307, 237Google Scholar
Lucas, R. & Liszt, H. S. 2000a, A&A, 358, 1069Google Scholar
Lucas, R. & Liszt, H. S. 2000b, A&A, 355, 327Google Scholar
Maier, J. P., Chakrabarty, S., Mazzotti, F. J., Rice, C. A., Dietsche, R., Walker, G. A. H., & Bohlender, D. A. 2011a, A&A, 729, L20Google Scholar
Maier, J. P., Walker, G. A. H., Bohlender, D. A., Mazzotti, F. J., Raghunandan, R., Fulara, J., Garkusha, I., & Nagy, A. 2011b, ApJ, 726, 41Google Scholar
Ohishi, M., Irvine, W., & Kaifu, N. 1992, in Astrochemistry of cosmic phenomena: proceedings of the 150th Symposium of the International Astronomical Union, held at Campos do Jordao, Sao Paulo, Brazil, August 5-9, 1991. Dordrecht: Kluwer, ed. P. D. Singh, 171–172Google Scholar
Savage, B. D., Drake, J. F., Budich, W., & Bohlin, R. C. 1977, ApJ, 216, 291Google Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525Google Scholar
Sheffer, Y., Rogers, M., Federman, S. R., Abel, N. P., Gredel, R., Lambert, D. L., & Shaw, G. 2008, ApJ, 687, 1075Google Scholar
Smith, I. W. M., Herbst, E., & Chang, Q. 2004, MNRAS, 350, 323Google Scholar
Snow, T. P. & McCall, B. J. 2006, ARA&A, 44, 367Google Scholar
Sonnentrucker, P., Welty, D. E., Thorburn, J. A., & York, D. G. 2007, ApJ Supplement Series, 168, 58CrossRefGoogle Scholar
Tielens, A. G. G. M. 2010, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press)Google Scholar
Turner, B. E., Herbst, E., & Terzieva, R. 2000, ApJ Supplement Series, 126, 427Google Scholar
Weselak, T., Galazutdinov, G. A., Beletsky, Y. & Krełowski, J. 2010, MNRAS, 402, 1991Google Scholar
Wilson, T. L., Rohlfs, K., & Hüttemeister, S. 2009, Tools of Radio Astronomy (Springer-Verlag)Google Scholar
Yamada, K. M. T. & Winnewisser, G. 2011, Interstellar Molecules, Springer Tracts in Modern Physics, 241Google Scholar
Zaleski, D. P., Seifert, N. A., Steber, A. L., Muckle, M. T., Loomis, R. A., Corby, J., Martinez, O. Jr., Crabtree, K. N., Jewell, P., Hollis, J. M., Lovas, F., Vasquez, D., Nyiramahirwe, J., Sciortino, N., Johnson, K., McCarthy, M. C., Remijan, A., & Pate, B. H. 2013, ApJ Letters, 765, L10Google Scholar