Article contents
What do planetary nebulae and H II regions reveal about the chemical evolution of nearby dwarf galaxies?
Published online by Cambridge University Press: 30 October 2019
Abstract
The Local Group contains a great number of dwarf irregulars and spheroidals, for which the spectroscopy of individual stars can be obtained. Thus, the chemical evolution of these galaxies can be traced, with the only need of finding populations spanning a large age range and such that we can accurately derive the composition. Planetary nebulae (PNe) are old- and intermediate-age star remnants and their chemical abundances can be obtained up to 3-4 Mpc. H ii regions, which are brighter and much easily detected, represent galaxies young content. PNe and H ii regions share similar spectroscopic features and are analysed in the same way. Both are among the best tracers of the chemical evolution allowing to draw the chemical time line of nearby galaxies. The focus in this review are the PN and H ii region populations as constraints to the chemical evolution models and the mass-metallicity relation of the local universe.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 14 , Symposium S344: Dwarf Galaxies: From the Deep Universe to the Present , August 2018 , pp. 161 - 177
- Copyright
- © International Astronomical Union 2019
References
- 1
- Cited by