No CrossRef data available.
Article contents
Weak Lensing in Scalar-Tensor Theories of Gravity: Preliminary Results
Published online by Cambridge University Press: 15 June 2005
Abstract
Scalar-tensor (ST) theories of gravity are the best motivated alternative to general relativity (GR), arising in every high-energy theory attempting to unify all the fundamental interactions. Furthermore, accomodating an arbitrary number of scalar fields, ST theories yield to cosmological scenarios with a dynamical realization of the dark energy. Solar-System experiments and binary-pulsars observations are compatible with very small departures from GR on the local universe ($z\simeq 0$); on cosmological scales, big-bang nucleosynthesis and cosmic microwave background (CMB) observables can admit larger deviations from the predictions of GR. Weak lensing could provide a test for ST theories of gravity on intermediate scales. Based on a code developed to study ST theories on CMB observables, we implemented a plug-in code to compute the convergence power spectrum and some 2-points statistics. Preliminary results using a simple model of ST theory are presented. This study is aimed to constraint classes of ST models.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 2004 , Issue IAUS225 , July 2004 , pp. 129 - 139
- Copyright
- © 2004 International Astronomical Union