Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T16:32:44.696Z Has data issue: false hasContentIssue false

Water-vapor maser disk at the nucleus of the Seyfert 2 IC 2560

Published online by Cambridge University Press:  01 March 2007

Aya Yamauchi
Affiliation:
University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8571, Japan email: [email protected]
Naomasa Nakai
Affiliation:
University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8571, Japan email: [email protected]
Yuko Ishihara
Affiliation:
Koriyama City Fureai Science Center, 2-11-1 Ekimae, Koriyama, Fukushima 963-8002, Japan
Philip Diamond
Affiliation:
Jodrell Bank Observatory, University of Manchester, Macclesfield, Cheshire, SK11 9DL, UK
Naoko Sato
Affiliation:
Wakayama University, 930 Sakaedani, Wakayama, Wakayama 640-8510, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We observed the H2O maser at the nucleus of the Seyfert 2, IC 2560, using the VLBA and the phased VLA. The systemic, red-shifted and blue-shifted maser features and a continuum component have been detected. We propose a maser disk in the nuclear region. The systemic and red-shifted features are emitted from a nearly edge-on disk with the position angle of PA = −47°. The thickness is 2H < 0.025 pc. The binding mass is 3.5 × 106M. Assuming the Keplerian rotation, the radii at the disk are r = 0.087-0.335 pc and the rotation velocities are 213–418 km s−1. The mean density within the inner radius is 1.3 × 109M pc−3, suggesting a massive black hole at the center. A continuum component is considered as a jet ejected from the nucleus, with an angle of 70° from the disk. The blue-shifted maser feature is located on the continuum component, being interpreted to be a ‘jet maser’.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aaronson, M., Bothun, G. D., Cornell, M. E., Dawe, J. A., Dickens, R. J., Hall, P. J., Sheng, H. M., Huchra, J. P., Lucey, J. R., Mould, J. R., Murray, J. D., Schmmer, R. A., & Wrighy, A. E. 1989, ApJ 338, 654Google Scholar
Gallimore, J. F., Henkel, C., Baum, S. A., Glass, I. S., Claussen, M. J., Prieto, M. A., & Von Kap-Herr, A. 2001, ApJ 556, 694Google Scholar
Ishihara, Y., Nakai, N., Iyomoto, N., Makishima, K., Diamond, P., & Hall, P. 2001, PASJ 53, 215Google Scholar
Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P., & Inoue, M. 1995, Nature 373, 127CrossRefGoogle Scholar
Strauss, M. A., Huchra, J. P., Davis, M., Yahil, A., Fisher, K. B., & Tonry, J. 1992 ApJS, 83, 29Google Scholar