Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:32:02.419Z Has data issue: false hasContentIssue false

Water Ice Formation and the o/p Ratio

Published online by Cambridge University Press:  21 December 2011

François Dulieu*
Affiliation:
LERMA, UMR 8112 du CNRSObservatoire de Paris et Université de Cergy Pontoise 5, mail Gay Lussac, 95000 Cergy Pontoise, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Water is observed in many astrophysical environments in both gas and solid phase. Water ice, for its specific properties, is probably the most important template that structures the gas-solid interaction. In cold environments, its synthesis is supposed to occur directly in the solid phase and then water acts as a catalytic matrix for subsequent synthesis of various molecules. When the medium begins to warm again, water sublimates and nourishes the gas phase, as occurs for example in comets or in star forming regions. Over the last four years, water formation on cold surfaces has been studied experimentally. Different precursors (O, O2, O3. . .) have been used to understand the complex mechanisms that take place. Although numerous questions remain unanswered, at present, it is clear that water is easily formed by different pathways, and that the ice formed has an amorphous structure. The recent observations of the ortho/para ratio of water with Herschel satellite have similarities with the previous o/p ratio observations of water in comets. Some experimental work have been recently reported in this domain, mostly rare gas matrix studies where nuclear spin conversion is measured even at 4.2 K. H2 molecules adsorbed on amorphous solid water ice also exhibit a nuclear spin conversion in presence of a tiny fraction of O2. Finally, I will discuss if microphysics properties of water desorption can explain the o/p ratio values observed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Mario Accolla PHD thesis, 2010.Google Scholar
Accolla, M., Congiu, E., Dulieu, F., Manicò, G., Chaabouni, H., Matar, E., Mokrane, H., Lemaire, J. L., & Pirronello, V., 2011, Phys. Chem. Chem. Phys., 13 (17), 80378045CrossRefGoogle Scholar
Amiaud, L., Fillion, J. H., Baouche, S., Dulieu, F., Momeni, A., & Lemaire, J. L. 2006, J. Chem. Phys., 124, 094702Google Scholar
Amiaud, L., Momeni, A., Dulieu, F., Fillion, J. H., Matar, E., & Lemaire, J. L., 2008, Phys. Rev. Lett., 100, 056101.Google Scholar
Bockelée-Morvan, D., Woodward, C. E., Kelley, M. S., & Wooden, D. H., 2009, ApJ 696, 2737Google Scholar
Bonev, B. P., Mumma, M. J., Villanueva, G. L., Disanti, M. A. et al. , 2007, ApJ, 661, L97Google Scholar
Buntkowsky, G., Limbach, H.-H., Walaszek, B., Adamczyk, A., Xu, Y., Breitzke, H., Schweitzer, A., Gutmann, T., Warchtler, M., Frydel, J., Emmler, Th., Amadeu, N., Tietze, D., Chaudret, B., 2008, Z. Phys. Chem. 222 10491063Google Scholar
Cherhouri, M., Fillion, J-H, Chaabouni, H. and Mokrane, et al. Phys. Chem. Chem. Phys., 13, 2172Google Scholar
Congiu, E., Matar, E., Kristensen, L. E., Dulieu, F. and Lemaire, J. L., 2009, Mon. Not. R. Astron. Soc. 397, L96Google Scholar
Cuppen, H. M. & Herbst, E. 2007, ApJ, 668, 294CrossRefGoogle Scholar
Cuppen, H. M., Ioppolo, S., Romanzin, C., van Dishoeck, E. F. & Linnartz, H, 2010, Phys. Chem. Chem. Phys., 12, 12077Google Scholar
Croviser, J., 1998, Faraday discuss. 109, 437.Google Scholar
Dartois, E. 2005, Space Science Reviews, 119, 293CrossRefGoogle Scholar
Workshop: Molecular databases for Herschel, ALMA and SOFIA from 6-8 Dec 2006, Lorentz center, Leiden, The Netherlands.Google Scholar
Dulieu, F., Amiaud, L., Fillion, J.-H., Matar, E., Momeni, A., Pirronello, V., & Lemaire, J. L. 2007, in Molecules in Space and Laboratory, Ed. Lemaire, J.L., Combes, F., p. 79Google Scholar
Dulieu, F., Amiaud, L., Congiu, E., Fillion, J.-H., Matar, E., Momeni, A., Pirronello, V., & Lemaire, J. L. 2010, A&A, 512, A30Google Scholar
Dulieu, F., Congiu, E., Fillion, J.H., Michaut, X. in preparation.Google Scholar
Ehrenfreund, P., Fraser, H. J., Blum, J., Cartwright, J. H. E., Garcìa-Ruiz, J. M., Hadamcik, E., Levasseur-Regourd, A. C., Price, S., Prodi, F., & Sarkissian, A. 2003, Planetary and Space Science, 51, 473Google Scholar
Fraser, H. J., Collings, M. P., MacCoustra, M. R. S., & Williams, D. A., 2001, Mon. Not. R. Astron. Soc. 327, 11651172Google Scholar
Fillion, J.-H., Amiaud, L., Congiu, E., et al. 2009, Phys. Chem. Chem. Phys., 11, 4396Google Scholar
Hidaka, H., Kouchi, A., & Watanabe, N., 2007, J. Chem. Phys., 126, 204707CrossRefGoogle Scholar
Hornekaer, L., Baurichter, A., Petrunin, V. V., Field, D. & Luntz, A. C., 2003 Science, 302, 1943Google Scholar
Hiraoka, K., Miyagoshi, T., Takayama, T., Yamamoto, K., & Kihara, Y. 1998, ApJ, 498, 710Google Scholar
Ioppolo, S., Cuppen, H. M., Romanzin, C., van Dishoeck, E. F., & Linnartz, H. 2008, ApJ 686 1474CrossRefGoogle Scholar
Ioppolo, S., Cuppen, H. M., Romanzin, C., van Dishoeck, E. F., & Linnartz, H. 2010, Phys. Chem. Chem. Phys., 12, 12065CrossRefGoogle Scholar
Kristensen, L. E., Amiaud, L., Fillion, J.-H., Dulieu, F., & Lemaire, J.-L., 2011, A&A, 527, A44Google Scholar
Oba, Y., Miyauchi, N., Hidaka, H., Chigai, T., Watanabe, N. and Kouchi, A., Astrophys. J., 2009, 701, 464.Google Scholar
Lis, D. C., Phillips, T. G., Goldsmith, F., & Neufeld, D. A., et al. 2010, A&A, 521, L26Google Scholar
Leger, A., Klein, J., de Cheveigne, S., Guinet, C., Defourneau, D., & Belin, M. 1979, A&A 79, 256Google Scholar
Matar, E., Congiu, E., Dulieu, F., Momeni, A., & Lemaire, J. L., 2008, A&A, 492, L17L20Google Scholar
Mokrane, H., Chaabouni, H., Accolla, M., Congiu, E., Dulieu, F., Chehrouri, M., Lemaire, J. L., 2009, ApJ, 705, L195Google Scholar
Melnick, G. J., Tolls, V., Neufeld, D. A., Bergin, E. A., et al. , 2010, A&A, 521, L27Google Scholar
Miyauchi, N., Hidaka, H., Chigai, T., Nagaoka, A., Watanabe, N., & Kouchi, A. 2008, Chemical Physics Letters, 456, 27CrossRefGoogle Scholar
Neufeld, D. A., Melnick, G. J., Sonnentrucker, P., Bergin, E. A. et al. , 2006, ApJ, 649, 816.CrossRefGoogle Scholar
Pardanaud, C., Vasserot, A.-M., Michaut, X. and Abouaf-Marguin, L., (2008), Journal of Molecular Structure 873, 181Google Scholar
Romanzin, C., Ioppolo, S., Cuppen, H. M., van Dishoeck, E. F., & Linnartz, H., 2011, J. Chem. Phys, 134, 084504CrossRefGoogle Scholar
Speedy, R. J., Debenedetti, P. G., Scott Smith, R., Huang, C., & Kay, B. D., 1996, J. Chem. Phys. 105, 240.CrossRefGoogle Scholar
Tielens, A. G. G. M., Hagen, W., & Greenberg, J. M. 1983, J. Phys. Chem., 87, 4220Google Scholar
Tielens, A. G. G. M. 2005, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press)Google Scholar
van Dishoeck, E. F. 2004, Annu. Rev. Astron. Astrophys., 42, 119CrossRefGoogle Scholar
Vastel, C., Ceccarelli, C., Caux, E., Coutens, A., et al. , 2010, A&A, 521, L31Google Scholar