No CrossRef data available.
Published online by Cambridge University Press: 07 February 2024
We report on a direct comparison of VLBI maser data and ALMA thermal-emission data for the high-mass protostar G353.273+0.641. We detected a gravitationally-unstable disk by dust and a high-velocity jet traced by a thermal CO line by ALMA long-baselines (LB). 6.7 GHz CH3OH masers trace infalling streamlines inside the disk. The innermost maser ring indicates another compact accretion disk of 30 au. Such a nested system could be caused by angular momentum transfer by the spiral arms. 22 GHz H2O masers trace the jet-accelerating region, which are directly connecting the CO jet and the protostar. The recurrent maser flares imply episodic jet ejections per 1–2 yr, while typical separation of CO knots indicates a variation of outflow rate per 100 yr. Our study demonstrates that VLBI maser observations are still a powerful tool to explore detailed structures nearby high-mass protostars by combining ALMA LB.