Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T02:30:19.968Z Has data issue: false hasContentIssue false

The volumetric star formation law in nearby galaxies

Published online by Cambridge University Press:  09 June 2023

C. Bacchini
Affiliation:
INAF - Astronomical Observatory of Padova, Vicolo dell’Osservatorio 5, IT-35122, Padova, Italy email: [email protected] Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands Department of Physics and Astronomy, University of Bologna, via Gobetti 93/2, I-40129, Bologna, Italy
F. Fraternali
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands
G. Pezzulli
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands
G. Iorio
Affiliation:
Department of Physics and Astronomy, University of Padova, Vicolo dell’Osservatorio 3, IT-35122, Padova, Italy
A. Marasco
Affiliation:
INAF - Astronomical Observatory of Padova, Vicolo dell’Osservatorio 5, IT-35122, Padova, Italy email: [email protected]
C. Nipoti
Affiliation:
Department of Physics and Astronomy, University of Bologna, via Gobetti 93/2, I-40129, Bologna, Italy

Abstract

Star formation laws are empirical relations between the cold gas (HI+H2) content of a galaxy and its star formation rate (SFR), being crucial for any model of galaxy formation and evolution. A well known example of such laws is the Schmidt-Kennicutt law, which is based on the projected surface densities. However, it has been long unclear whether a more fundamental relation exists between the intrinsic volume densities. By assuming the vertical hydrostatic equilibrium, we infer radial profiles for the thickness of gaseous discs in a sample of 23 local galaxies, and use these measurements to convert the observed surface densities of the gas and the SFR into the de-projected volume densities. We find a tight correlation linking these quantities, that we call the volumetric star formation law. This relation and its properties have crucial implications for our understanding of the physics of star formation.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacchini, C., Fraternali, F., Iorio, G., & Pezzulli, G. 2019,a A&A, 622a, A64.Google Scholar
Bacchini, C., Fraternali, F., Pezzulli, G., & Marasco, A. 2020, A&A, 644, A125.Google Scholar
Bacchini, C., Fraternali, F., Pezzulli, G., Marasco, A., Iorio, G., & Nipoti, C. 2019,b A&A, 632b, A127.Google Scholar
Bigiel, F., Leroy, A., Walter, F., Blitz, L., Brinks, E., de Blok, W. J. G., & Madore, B. 2010, AJ, 140, 11941213.10.1088/0004-6256/140/5/1194CrossRefGoogle Scholar
Bono, G., Marconi, M., Cassisi, S., Caputo, F., Gieren, W., & Pietrzynski, G. 2005, ApJ, 621, 966977.10.1086/427744CrossRefGoogle Scholar
Di Teodoro, E. M. & Fraternali, F. 2015, MNRAS, 451, 30213033.10.1093/mnras/stv1213CrossRefGoogle Scholar
Iorio, G. 2018,. PhD thesis, PhD Thesis, University of Bologna, (2018).Google Scholar
Kennicutt, R. C. & Evans, N. J. 2012, ARA&A, 50, 531608.Google Scholar
Marasco, A., Fraternali, F., van der Hulst, J. M., & Oosterloo, T. 2017, A&A, 607, A106.Google Scholar
Olling, R. P. 1996, AJ, 112, 457.10.1086/118028CrossRefGoogle Scholar
Schmidt, M. 1959, ApJ, 129, 243.10.1086/146614CrossRefGoogle Scholar
Yim, K., Wong, T., Howk, J. C., & van der Hulst, J. M. 2011, AJ, 141, 48.10.1088/0004-6256/141/2/48CrossRefGoogle Scholar