Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T03:01:31.082Z Has data issue: false hasContentIssue false

The Virgo Cluster

Published online by Cambridge University Press:  26 February 2013

Jeremy Mould*
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn 3122, Australia ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the era of precision cosmology, the Virgo cluster takes on a new role in the cosmic distance scale. Its traditional role of testing the consistency of secondary distance indicators is replaced by an ensemble of distance measurements within the Local Supercluster, united by a velocity-field model obtained from a reconstruction based on redshift surveys. The Wilkinson Microwave Anisotropy Probe (WMAP) leads us to see the Hubble constant as one of six parameters in a standard model of cosmology with considerable covariance among parameters. Independent experiments, such as WMAP, the Hubble Space Telescope Key Project on the Extragalactic Distance Scale, and their successors constrain these parameters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Aaronson, M. & Mould, J. 1983, ApJ, 265, 1CrossRefGoogle Scholar
Bird, S., Harris, W., Blakeslee, J., & Flynn, C. 2010, A&A, 524, 71Google Scholar
Binggeli, B., Sandage, A., & Tammann, G. 1985, AJ, 90, 1681CrossRefGoogle Scholar
Bohringer, H., Briel, U., Schwarz, R., Voges, W., Hartner, G., & Trumper, J. 1994, Nature, 368, 828CrossRefGoogle Scholar
Catinella, B., Kauffmann, G., Schiminovich, D., et al. 2012, MNRAS, 420, 1959Google Scholar
Erdoğdu, P., Lahav, O., Huchra, J. P., et al. 2006, MNRAS, 373, 45Google Scholar
Feldman, H., Watkins, R., & Hudson, M. 2010, MNRAS, 407, 2328Google Scholar
Ferrarese, L., Côté, P., Cuillandre, J.-C., et al. 2012, ApJS, 200, 4CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Scowcroft, V., Burns, C., Monson, A., Persson, S. E., Seibert, M., & Rigby, J. 2012, ApJ, 758, 24CrossRefGoogle Scholar
Huchra, J. P., Macri, L. M., Masters, K. L., et al. 2012, ApJS, 199, 26Google Scholar
Lavaux, G., Tully, R. B., Mohayaee, R., & Colombi, S. 2010, ApJ, 709, 483Google Scholar
Magoulas, C. 2012, Ph.D. thesis, University of Melbourne, AustraliaGoogle Scholar
Martin, J. 2012, in: Comptes Rendus de l'Academie des Sciences, in press (arXiv:1205.3365)Google Scholar
Mei, S., Blakeslee, J. P., Côté, P., et al. 2007, ApJ, 655, 144Google Scholar
Mould, J. 2011, PASP, 123, 1030Google Scholar
Mould, J., Aaronson, M., & Huchra, J. 1980, ApJ, 238, 458Google Scholar
Mould, J. & Sakai, S. 2008, ApJ, 686, L75Google Scholar
Mould, J. & Sakai, S. 2009a, ApJ, 694, 1331CrossRefGoogle Scholar
Mould, J. & Sakai, S. 2009b, ApJ, 697, 996Google Scholar
Sandage, A. 1961, ApJ, 133, 355CrossRefGoogle Scholar
Springob, C. M., Masters, K. L., Haynes, M. P., Giovanelli, R., & Marinoni, C. 2007, ApJS, 172, 599Google Scholar
Steigman, G. 2012, in: Neutrino Physics, Advances in High Energy Physics, in press (arXiv:1208.0032)CrossRefGoogle Scholar
Suyu, S., Treu, T., Blandford, R. D., et al. 2012, in: KIPAC workshop on the Hubble constant (arXiv:1202.4459)Google Scholar
Tammann, G. 1999, IAU Symp., 183, 31Google Scholar
Tonry, J. L., Dressler, A., Blakeslee, J. P., Ajhar, E. A., Fletcher, A. B., Luppino, G. A., Metzger, M. R., & Moore, C. B. 2001, ApJ, 546, 681Google Scholar
Villegas, D., Jordán, A., Peng, E. W., et al. 2010, ApJ, 717, 603Google Scholar