Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T01:20:14.843Z Has data issue: false hasContentIssue false

Very Metal-Poor Stars and the Early Universe

Published online by Cambridge University Press:  02 August 2018

John E. Norris*
Affiliation:
Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Very metal-poor stars ([Fe/H] < –2.0) inform our understanding of the formation and evolution of the Galaxy, and the physical conditions in the earliest star-forming environments of the Universe. They play an integral part in the paradigms of stellar populations, stellar archaeology, and near-field cosmology. We review the carbon-rich and carbon-normal sub-populations of the most iron-poor stars, providing insight into chemical enrichment at the earliest times in the Universe. We also discuss the role of very metal-poor stars in providing insight into the Galaxy’s halo, thick disk, and bulge, and the promise they hold for the future. A comparison between the abundances obtained for the nine most Fe-poor stars ([Fe/H] < –4.5) (all but one of which is C-rich) with abundances obtained from far-field cosmology suggests that the former are the most chemically primitive objects yet observed and probably older than the DLA- and sub-DLA systems for which data are currently available from far-field studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aoki, W., Beers, T. C., Christlieb, N., et al. 2007, ApJ, 655, 492Google Scholar
Aoki, W., Frebel, A., Christlieb, N., et al. 2006, ApJ, 639, 897Google Scholar
Becker, G. D., Sargent, W. L. W., Rauch, M., et al. 2012, ApJ, 744, 91Google Scholar
Beers, T. C., Carollo, D., Ivezić, Ž., et al. 2012, ApJ, 746, 34Google Scholar
Beers, T. C. & Christlieb, N., 2005, ARA&A, 43, 531Google Scholar
Beers, T. C., Norris, J. E., Placco, V. M., et al. 2014, ApJ, 794, 58Google Scholar
Beers, T. C., Placco, V. M., Carollo, D., et al. 2017, ApJ, 835, 81Google Scholar
Beers, T. C., Preston, G. W., & Shectman, S. A., 1992, AJ, 103, 1987Google Scholar
Bessell, M. S. & Norris, J., 1984, ApJ, 285, 622Google Scholar
Bidelman, W. P. & MacConnell, D. J., 1973, AJ, 78, 687Google Scholar
Bonifacio, P., Caffau, E., Spite, M., et al. 2015, A&A, 579, A28Google Scholar
Bromm, V. & Loeb, A., 2003, Nature, 425, 812Google Scholar
Caffau, E., Bonifacio, P., François, P., et al. 2012, A&A, 542, A51Google Scholar
Carney, B. W., Laird, J. B., Latham, D. W., et al. 1996, AJ, 112, 668Google Scholar
Carollo, D., Beers, T. C., Lee, Y. S., et al. 2007, Nature, 450, 1020Google Scholar
Chamberlain, J. W. & Aller, L. H., 1951, ApJ, 114, 52Google Scholar
Christlieb, N., Gustafsson, B., Korn, A. J., et al. 2004, ApJ, 603, 708Google Scholar
Christlieb, N., Schörck, T., Frebel, A., et al. 2008, A&A, 484, 721Google Scholar
Cooke, R. J. & Madau, P., 2014, ApJ, 791, 116Google Scholar
Cooke, R., Pettini, M., & Murphy, M. T., 2012, MNRAS, 425, 347Google Scholar
Cooke, R., Pettini, M., Steidel, C. C., et al. 2011, MNRAS, 417, 1534Google Scholar
Fernández-Alvar, E., Carigi, L., & Allende Prieto, C., 2017, MNRAS, 465, 1586Google Scholar
Frebel, A., Aoki, W., Christlieb, N., et al. 2005, Nature, 434, 871Google Scholar
Frebel, A., Chiti, A., Ji, A. P., et al. 2015, ApJL, 810, L27Google Scholar
Frebel, A., Johnson, J. L., & Bromm, V., 2007, MNRAS, 380, L40Google Scholar
Frebel, A. & Norris, J. E. 2013, In Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, ed. T.D.Oswalt, G.Gilmore, 55Google Scholar
Frebel, A. & Norris, J. E., 2015, ARA&A, 53, 631Google Scholar
Frebel, A., Simon, J. D., Kirby, E. N., 2014, ApJ, 786, 74Google Scholar
Fryer, C. L., Woosley, S. E., & Heger, A., 2001, ApJ, 550, 372Google Scholar
Hansen, T., Hansen, C. J., Christlieb, N., et al. 2014, ApJ, 787, 162Google Scholar
Heger, A. & Woosley, S. E., 2010, ApJ, 724, 341Google Scholar
Helmi, A., Veljanoski, J., Breddels, M. A., et al. 2017, A&A, 598, A58Google Scholar
Howes, L. M. 2016, PhD Thesis, The Australian National UniversityGoogle Scholar
Jacobson, H. R., Keller, S., Frebel, A., et al. 2015, ApJ, 807, 171Google Scholar
Keller, S. C., Bessell, M. S., Frebel, A., et al. 2014, Nature, 506, 463Google Scholar
Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, PASA, 24, 1Google Scholar
Limongi, M., Chieffi, A., & Bonifacio, P., 2003, ApJL, 594, L123Google Scholar
Meynet, G., Ekström, S., & Maeder, A., 2006, A&A, 447, 623Google Scholar
Meynet, G., Hirschi, R., Ekström, S., et al. 2010, A&A, 521, A30Google Scholar
Morrison, H. L., Flynn, C., & Freeman, K. C., 1990, AJ, 100, 1191Google Scholar
Norris, J., Bessell, M. S., & Pickles, A. J., 1985, ApJS, 58, 463Google Scholar
Norris, J. E., Christlieb, N., Korn, A. J., et al. 2007, ApJ, 670, 774Google Scholar
Norris, J. E., Yong, D., Bessell, M. S., et al. 2013, ApJ, 762, 28Google Scholar
Ruchti, G. R., Fulbright, J. P., Wyse, R. F. G., et al. 2010, ApJL, 721, L92Google Scholar
Ryan, S. G. & Lambert, D. L., 1995, AJ, 109, 2068Google Scholar
Ryan, S. G. & Norris, J. E., 1991, AJ, 101, 1835Google Scholar
Schönrich, R., Asplund, M., & Casagrande, L., 2011, MNRAS, 415, 3807Google Scholar
Starkenburg, E., Martin, N., Youakim, K., et al. 2017, MNRAS, 471, 2587Google Scholar
Starkenburg, E., Shetrone, M. D., McConnachie, A. W., et al. 2014, MNRAS, 441, 1217Google Scholar
Suda, T., Aikawa, M., Machida, M. N., et al. 2004, ApJ, 611, 476Google Scholar
Umeda, H. & Nomoto, K., 2003, Nature, 422, 871Google Scholar
Yoon, J., Beers, T. C., Placco, V. M, et al. 2016, ApJ, 833, 20Google Scholar