No CrossRef data available.
Published online by Cambridge University Press: 23 December 2005
The living record of early Galactic nucleosynthesis is written in the chemical compositions of metal-poor stars. For stars with metallicities $-1.0 \geq $ [Fe/H] $\geq -2.5$, several decades of spectroscopic studies have delineated the abundance trends of elements that are synthesized by major nuclear fusion reaction chains. There is very strong observational evidence that the r-process isotopes identified in metal-poor stars and the solar system matter are in fact the product of two distinct types of r-process events. The observed pattern beyond Z [ges ] 40 up to Th-U should most likely be produced by only one (or a few) r-process event(s) in a unique stellar site. This “main” r-process then produces the “low-Z” elements (40 [les ] Z [les ] 48) under-abundant compared to solar, and reaches the full solar values presumably around Te.