Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T18:47:31.064Z Has data issue: false hasContentIssue false

The very massive star content of the nuclear star clusters in NGC 5253

Published online by Cambridge University Press:  28 July 2017

Linda J. Smith
Affiliation:
European Space Agency and Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA email: [email protected]
Paul A. Crowther
Affiliation:
Dept. of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK email: [email protected]
Daniela Calzetti
Affiliation:
Dept. of Astronomy, University of Massachusetts – Amherst, Amherst, MA 01003, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters. Calzetti et al. (2015) find that the two clusters have an age of 1 Myr, in contradiction to the age of 3–5 Myr inferred from the presence of Wolf-Rayet (W-R) spectral features. We use Hubble Space Telescope (HST) far-ultraviolet (FUV) and ground-based optical spectra to show that the cluster stellar features arise from very massive stars (VMS), with masses greater than 100 M, at an age of 1–2 Myr. We discuss the implications of this and show that the very high ionizing flux can only be explained by VMS. We further discuss our findings in the context of VMS contributing to He ii λ1640 emission in high redshift galaxies, and emphasize that population synthesis models with upper mass cut-offs greater than 100 M are crucial for future studies of young massive clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Alonso-Herrero, A., Takagi, T., Baker, A. J., et al. 2004, ApJ, 612, 222 CrossRefGoogle Scholar
Beck, S. C., Turner, J. L., Ho, P. T. P., Lacy, J. H., & Kelly, D. M., 1996, ApJ, 457, 610 CrossRefGoogle Scholar
Calzetti, D., Meurer, G. R., Bohlin, R. C., et al. 1997, AJ, 114, 1834 CrossRefGoogle Scholar
Calzetti, D., Johnson, K. E., Adamo, A., et al. 2015, ApJ, 811, 75 CrossRefGoogle Scholar
Campbell, A., Terlevich, R., & Melnick, J., 1986, MNRAS, 223, 811 CrossRefGoogle Scholar
Crowther, P. A., Schnurr, O., Hirschi, R., et al. 2010, MNRAS, 408, 731 CrossRefGoogle Scholar
Crowther, P. A., Caballero-Nieves, S. M., Bostroem, K. A., et al. 2016, MNRAS, 458, 624 CrossRefGoogle Scholar
Davidge, T. J., 2007, AJ, 134, 1799 CrossRefGoogle Scholar
Doran, E. I., Crowther, P. A., de Koter, A., et al. 2013, A&A, 558, A134 Google Scholar
Erb, D. K., Pettini, M., Shapley, A. E., et al. 2010, ApJ, 719, 1168 CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47 CrossRefGoogle Scholar
Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, ApJS, 123, 3 CrossRefGoogle Scholar
Monreal-Ibero, A., Vílchez, J. M., Walsh, J. R., & Muñoz-Tuñón, C., 2010, A&A, 517, A27 Google Scholar
Monreal-Ibero, A., Walsh, J. R., & Vílchez, J. M., 2012, A&A, 544, A60 Google Scholar
Schaerer, D., Contini, T., Kunth, D., & Meynet, G., 1997, ApJ, 481, L75 CrossRefGoogle Scholar
Smith, L. J., Crowther, P. A., Calzetti, D., & Sidoli, F. 2016, ApJ, 823: 38 CrossRefGoogle Scholar
Turner, J. L., Beck, S. C., Benford, D. J., et al. 2015, Nature, 519, 331 CrossRefGoogle Scholar
Turner, J. L. & Beck, S. C., 2004, ApJ, 602, L85 CrossRefGoogle Scholar
Turner, J. L., Beck, S. C., & Ho, P. T. P., 2000, ApJ, 532, L109 CrossRefGoogle Scholar