Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T02:13:49.399Z Has data issue: false hasContentIssue false

Very high energy γ-radiation from the radio quasar 4C 21.35

Published online by Cambridge University Press:  17 August 2012

Josefa Becerra González
Affiliation:
Inst. de Astrofsica de Canarias, E-38200 La Laguna, Tenerife, Spain Depto. de Astrofsica, Universidad de La Laguna, E-38206 La Laguna, Spain
Laura Maraschi
Affiliation:
INAF National Institute for Astrophysics, I-00136 Rome, Italy
Daniel Mazin
Affiliation:
IFAE, Edifici Cn., Campus UAB, E-08193 Bellaterra, Spain Max-Planck-Institut fr Physik, D-80805 Mnchen, Germany
Elisa Prandini
Affiliation:
Universit di Padova and INFN, I-35131 Padova, Italy
Koji Saito
Affiliation:
Max-Planck-Institut fr Physik, D-80805 Mnchen, Germany
Julian Sitarek
Affiliation:
University of d, PL-90236 Lodz, Poland
Antonio Stamerra
Affiliation:
Universit di Siena, and INFN Pisa, I-53100 Siena, Italy
Fabrizio Tavecchio
Affiliation:
INAF National Institute for Astrophysics, I-00136 Rome, Italy
Tomislav Terzić
Affiliation:
University of Rijeka, HR-51000 Rijeka, Croatia, email: [email protected]
Aldo Treves
Affiliation:
Universit dellnsubria, Como, I-22100 Como, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A very high energy (VHE) γ-radiation was detected from a flat spectrum radio quasar (FSRQ) 4C 21.35 (PKS1222+21) by MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes on June 17th 2010. 4C 21.35 is only the 3rd FSRQ detected in VHE γ-rays. With its hard spectrum (Γ = 2.72±0.34) with no apparent cut-off at energies below 130 GeV and an extremely fast variation of flux (doubling in 8.6+1.1−0.9 minutes), this detection poses a challenge to existing models of VHE γ-radiation from FSRQs. The most important results of observations performed by MAGIC telescopes are presented here, as well as some possible explanations of those results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aleksić, J., et al. (the MAGIC Collaboration) 2010, ApJL, 726, 58CrossRefGoogle Scholar
Aleksić, J., et al. (the MAGIC Collaboration) 2011a, accepted to Astroparticle Physics, arXiv:1108.1477Google Scholar
Aleksić, J., et al. (the MAGIC Collaboration) 2011b, ApJL, 730, L8.CrossRefGoogle Scholar
Bromberg, O. & Levinson, A. 2009, ApJ, 699, 1274CrossRefGoogle Scholar
Dominguez, A. et al. 2011, MNRAS, 410, 2556CrossRefGoogle Scholar
Ghisellini, G. & Tavecchio, F. 2008, MNRAS, 386, 28CrossRefGoogle Scholar
Ghisellini, G. & Tavecchio, F. 2009, MNRAS, 397, 985CrossRefGoogle Scholar
Giannios, D., Uzdensky, D. A., & Begelman, M. C. 2009, MNRAS, 395, 29CrossRefGoogle Scholar
Liu, H. T. & Bai, J. M. 2006, ApJ, 653, 1089CrossRefGoogle Scholar
Marscher, A. P. & Jorstad, S. G. 2010, in: Savolainen, T., Ros, E., Porcas, R. W., & Zensus, J. A. (eds.), Rapid Variability of Gamma-ray Emission from Sites near the 43 GHz Cores of Blazar Jets, Proc. Fermi meets Jansky: AGN in Radio and Gamma-Rays (Bonn: MPI), p. 171Google Scholar
Moralejo, A., et al. (the MAGIC Collaboration) 2009, Proceedings of 31st ICRC, Łódź, Poland, arXiv:0907.0943Google Scholar
Nalewajko, K. & Sikora, M. 2009, MNRAS, 392, 1205CrossRefGoogle Scholar
Osterbrock, D. E. & Pogge, R. W. 1987, ApJ, 323, 108CrossRefGoogle Scholar
Reimer, A. 2007, ApJ, 665, 1023CrossRefGoogle Scholar
Stawarz, L., Aharonian, F., Kataoka, J., et al. 2006, MNRAS, 370, 981CrossRefGoogle Scholar
Tavecchio, F. & Mazin, D. 2009, MNRAS, 392, L40.CrossRefGoogle Scholar
Tavecchio, F., Becerra-Gonzalez, J., Ghisellini, G., et al. 2011, A&A, 534, A86.Google Scholar