No CrossRef data available.
Published online by Cambridge University Press: 10 June 2020
A wealth of observations recently challenged the notion of a universal stellar initial mass function (IMF) by showing evidences in favour of a variability of this statistical indicator as a function of galaxy properties. I present predictions from the semi-analytic model gaea (GAlaxy Evolution and Assembly), which features (a) a detailed treatment of chemical enrichment, (b) an improved stellar feedback scheme, and (c) implements theoretical prescriptions for IMF variations. Our variable IMF realizations predict intrinsic stellar masses and mass-to-light ratios larger than those estimated from synthetic photometry assuming a universal IMF. This provides a self-consistent interpretation for the observed mismatch between photometrically inferred stellar masses of local early-type galaxies and those derived by dynamical and spectroscopic studies. At higher redshifts, the assumption of a variable IMF has a deep impact on our ability to reconstruct the evolution of the galaxy stellar mass function and the star formation history of galaxies.