No CrossRef data available.
Published online by Cambridge University Press: 29 April 2014
The upper atmosphere of Venus is not shielded by planetary magnetic field from direct interaction with the solar wind. The interaction of shocked solar wind and the ionosphere results in ionopause. Magnetic barrier, the inner region of dayside magnetosheath with the dominated magnetic pressure deflects the solar wind instead of the ionopause at solar maximum. Therefore, the structure and interaction of venusian ionosphere is very complex. Although the Venus Express (VEX) arrived at Venus in April 2006 provides more knowledge on the Venusian ionosphere and plasma environment, compared to Pioneer Venus Orbiter (PVO) with about 14 years of observations, some important details are still unknown (e.g., long Venusian bow shock variations and effects). In this paper, the bow shock positions of Venus are determined and analyzed from magnetometer (MAG) and ASPERA-4 of the Venus Express mission from May 28, 2006 to August 17, 2010. Results show that the altitude of BS was mainly affected by SZA (solar zenith angle) and Venus bow shocks inbound and outbound are asymmetry.