Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T16:24:00.229Z Has data issue: false hasContentIssue false

Variable radio AGN at high redshift identified in the VLA Sky Survey

Published online by Cambridge University Press:  29 March 2021

Kristina Nyland
Affiliation:
National Research Council fellow, resident at NRL, Washington, DC, USA
Dillon Dong
Affiliation:
California Institute of Technology, Pasadena, CA, USA
Pallavi Patil
Affiliation:
University of Virginia, Charlottesville, VA, USA NRAO, Charlottesville, VA, USA
Mark Lacy
Affiliation:
NRAO, Charlottesville, VA, USA
Amy Kimball
Affiliation:
NRAO, Socorro, NM, USA
Gregg Hallinan
Affiliation:
California Institute of Technology, Pasadena, CA, USA
Sumit Sarbadhicary
Affiliation:
Michigan State University, Lansing, MI, USA
Emil Polisensky
Affiliation:
NRL, Washington, DC, USA
Namir Kassim
Affiliation:
NRL, Washington, DC, USA
Wendy Peters
Affiliation:
NRL, Washington, DC, USA
Tracy Clarke
Affiliation:
NRL, Washington, DC, USA
Dipanjan Mukherjee
Affiliation:
IUCAA, Pune, India
Sjoert van Velzen
Affiliation:
New York University, New York, NY, USA University of Maryland, College Park, MD, USA
Vivienne Baldassare
Affiliation:
National Research Council fellow, resident at NRL, Washington, DC, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As part of an on-going study of radio transients in Epoch 1 (2017–2019) of the Very Large Array Sky Survey (VLASS), we have discovered a sample of 0.2 < z < 3.2 active galactic nuclei (AGN) selected in the optical/infrared that have recently brightened dramatically in the radio. These sources would have previously been classified as radio-quiet based on upper limits from the Faint Images of the Radio Sky at Twenty-centimeters (FIRST; 1993-2011) survey; however, they are now consistent with radio-loud quasars. We present a quasi-simultaneous, multi-band (1–18 GHz) VLA follow-up campaign of our sample of AGN with extreme radio variability. We conclude that the radio properties are most consistent with AGN that have recently launched jets within the past few decades, potentially making them among the youngest radio AGN known.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

An, T. & Baan, W. A. 2012, ApJ, 760, 77 CrossRefGoogle Scholar
Assef, R. J., Stern, D., Noirot, G., et al. 2018, ApJS, 234, 23 CrossRefGoogle Scholar
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559 CrossRefGoogle Scholar
Bodo, G., Mamatsashvili, G., Rossi, P., et al. 2013, MNRAS, 434, 3030 CrossRefGoogle Scholar
Callingham, J. R., Ekers, R. D., Gaensler, B. M., et al. 2017, ApJ, 836, 174 CrossRefGoogle Scholar
Clarke, T. E., Kassim, N. E., Brisken, W., et al. 2016, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9906, Commensal low frequency observing on the NRAO VLA: VLITE status and future plans, 99065BCrossRefGoogle Scholar
Duffy, P. & Blundell, K. M. 2012, MNRAS, 421, 108 Google Scholar
Gugliucci, N. E., Taylor, G. B., Peck, A. B., et al. 2005, ApJ, 622, 136 CrossRefGoogle Scholar
Jarvis, M. E., Harrison, C. M., Thomson, A. P., et al. 2019, MNRAS, 485, 2710 CrossRefGoogle Scholar
Jeyakumar, S. 2016, MNRAS, 458, 3786 CrossRefGoogle Scholar
Kellermann, K. I., Condon, J. J., Kimball, A. E., et al. 2016, ApJ, 831, 168 CrossRefGoogle Scholar
Lacy, M., Baum, S. A., Chandler, C. J., et al. 2020, PASP, 132, 035001 CrossRefGoogle Scholar
Lonsdale, C. J., Lacy, M., Kimball, A. E., et al. 2015, ApJ, 813, 45 CrossRefGoogle Scholar
Marscher, A. P. & Gear, W. K. 1985, ApJ, 298, 114 CrossRefGoogle Scholar
Mooley, K. P., Hallinan, G., Bourke, S., et al. 2016, ApJ, 818, 105 CrossRefGoogle Scholar
Nyland, K., Harwood, J. J., Mukherjee, D., et al. 2018, ApJ, 859, 23 CrossRefGoogle Scholar
Pâris, I., Petitjean, P., Aubourg, É., et al. 2018, A&A, 613, A51 Google Scholar
Patil, P., Nyland, K., Whittle, M., et al. 2020, arXiv e-prints, arXiv:2004.07914Google Scholar
Pietka, M., Fender, R. P., & Keane, E. F. 2015, MNRAS, 446, 3687 CrossRefGoogle Scholar
Polisensky, E., Lane, W. M., Hyman, S. D., et al. 2016, ApJ, 832, 60 CrossRefGoogle Scholar
Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, ApJS, 194, 45 CrossRefGoogle Scholar
Thyagarajan, N., Helfand, D. J., White, R. L., et al. 2011, ApJ, 742, 49 CrossRefGoogle Scholar
Wójtowicz, A., Staarz, ł, & Cheung, C. C. 2020, ApJ 892, 116 CrossRefGoogle Scholar