Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T23:14:08.016Z Has data issue: false hasContentIssue false

Using High-Mass X-ray binaries to probe massive binary evolution: The age distribution of High-Mass X-ray binaries in M33

Published online by Cambridge University Press:  30 December 2019

Kristen Garofali
Affiliation:
Department of Astronomy, University of WashingtonBox 351580, U.W., Seattle, WA, USA emails: [email protected], [email protected] Department of Physics, University of Arkansas, 825 West Dickson St, Fayetteville, AR, USA email: [email protected]
Benjamin F. Williams
Affiliation:
Department of Astronomy, University of WashingtonBox 351580, U.W., Seattle, WA, USA emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-mass X-ray binaries (HMXBs) provide an exciting window into the underlying processes of both binary as well as massive star evolution. Because HMXBs are systems containing a compact object accreting from a high-mass star at close orbital separations they are also likely progenitors of gamma-ray bursts and gravitational wave sources. We present classification and age measurements for HMXBs in M33 using a combination of deep Chandra X-ray imaging, and archival Hubble Space Telescope data. We constrain the ages of the HMXB candidates by fitting the color-magnitude diagrams of the surrounding stars, which yield the star formation histories of the surrounding region. Unlike the age distributions measured for HMXB populations in the Magellanic Clouds, the age distribution for the HMXB population in M33 contains a number of extremely young (<5 Myr) sources. We discuss these results the context of the effect of host galaxy properties on the observed HMXB population.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Antoniou, V., & Zezas, A. 2016, MNRAS, 459, 528 CrossRefGoogle Scholar
Antoniou, V., Zezas, A., Hatzidimitriou, D., & Kalogera, V. 2010, ApJ, 716, L140 CrossRefGoogle Scholar
Belczynski, K., & Taam, R. E. 2008, ApJ, 685, 400 CrossRefGoogle Scholar
Belczynski, K., & Ziolkowski, J. 2009, ApJ, 707, 870 CrossRefGoogle Scholar
Belczynski, K., Askar, A., Arca-Sedda, M., et al. 2018, A&A, 615, A91 Google Scholar
Berger, E. 2014, ARA&A, 52, 43 CrossRefGoogle Scholar
Berghea, C. T., Dudik, R. P., Tincher, J., & Winter, L. M. 2013, ApJ, 776, 100 CrossRefGoogle Scholar
Binder, B., Williams, B. F., Kong, A. K. H., et al.. 2016, MNRAS, 457, 1636 CrossRefGoogle Scholar
Casares, J., Negueruela, I., Ribó, M., et al. 2014, Nature, 505, 378 CrossRefGoogle Scholar
Coe, M. J., Edge, W. R. T., Galache, J. L., & McBride, V. A. 2005, MNRAS, 356, 502 CrossRefGoogle Scholar
Coleiro, A., & Chaty, S. 2013, ApJ, 764, 185 CrossRefGoogle Scholar
Crowther, P. A., Barnard, R., Carpano, S., et al. 2010, MNRAS, 403, L41 CrossRefGoogle Scholar
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, 2MASS All Sky Catalog of point sources.Google Scholar
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al.. 2002, MNRAS, 332, 91 Google Scholar
Dominik, M., Belczynski, K., Fryer, C., et al. 2012, ApJ, 759, 52 CrossRefGoogle Scholar
Dray, L. M. 2006, MNRAS, 370, 2079 CrossRefGoogle Scholar
Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269 CrossRefGoogle Scholar
Eldridge, J. J., Langer, N., & Tout, C. A. 2011, MNRAS, 414, 3501 CrossRefGoogle Scholar
Fryer, C. L., Belczynski, K., Wiktorowicz, G., et al. 2012, ApJ, 749, 91 CrossRefGoogle Scholar
Garofali, K., Williams, B. F., Hillis, T., et al.. 2018, MNRAS, 479, 3526 CrossRefGoogle Scholar
Gogarten, S. M., Dalcanton, J. J., Williams, B. F., et al.. 2009, ApJ, 691, 115 CrossRefGoogle Scholar
Grimm, H.-J., Gilfanov, M., & Sunyaev, R. 2003, MNRAS, 339, 793 CrossRefGoogle Scholar
Grimm, H.-J., McDowell, J., Zezas, A., Kim, D.-W., & Fabbiano, G. 2005, ApJS, 161, 271 CrossRefGoogle Scholar
Ivanova, N., Justham, S., Chen, X., et al. 2013, A&A Rev, 21, 59 Google ScholarPubMed
Jennings, Z. G., Williams, B. F., Murphy, J. W., et al. 2012, ApJ, 761, 26 CrossRefGoogle Scholar
. 2014, ApJ, 795, 170 CrossRefGoogle Scholar
Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57 CrossRefGoogle Scholar
Lazzarini, M., Hornschemeier, A. E., Williams, B. F., et al. 2018, ApJ, 862, 28 CrossRefGoogle Scholar
Linden, T., Kalogera, V., Sepinsky, J. F., et al. 2010, ApJ, 725, 1984 CrossRefGoogle Scholar
Linden, T., Sepinsky, J. F., Kalogera, V., & Belczynski, K. 2009, ApJ, 699, 1573 CrossRefGoogle Scholar
Liu, J.-F., Bregman, J. N., Bai, Y., Justham, S., & Crowther, P. 2013, Nature, 503, 500 CrossRefGoogle Scholar
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2005, A&A, 442, 1135 Google Scholar
. 2006, A&A, 455, 1165 Google Scholar
Long, K. S., Charles, P. A., & Dubus, G. 2002, ApJ, 569, 204 CrossRefGoogle Scholar
Maccarone, T. J., Lehmer, B. D., Leyder, J. C., et al. 2014, MNRAS, 439, 3064 CrossRefGoogle Scholar
Magrini, L., Vlchez, J. M., Mampaso, A., Corradi, R. L. M., & Leisy, P. 2007, A&A, 470, 865 Google Scholar
Mandel, I. 2016, MNRAS, 456, 578 CrossRefGoogle Scholar
Massey, P., Olsen, K. A. G., Hodge, P. W., et al. 2006, AJ, 131, 2478 CrossRefGoogle Scholar
McSwain, M. V., & Gies, D. R. 2005, ApJS, 161, 118 CrossRefGoogle Scholar
Mineo, S., Gilfanov, M., & Sunyaev, R. 2012, MNRAS, 419, 2095 CrossRefGoogle Scholar
Moe, M., & Di Stefano, R. 2017, ApJS, 230, 15 CrossRefGoogle Scholar
Orosz, J. A., McClintock, J. E., Narayan, R., et al. 2007, Nature, 449, 872 CrossRefGoogle Scholar
Pfahl, E., Rappaport, S., Podsiadlowski, P., & Spruit, H. 2002, ApJ, 574, 364 CrossRefGoogle Scholar
Pietsch, W., Haberl, F., Sasaki, M., et al. 2006, ApJ, 646, 420 CrossRefGoogle Scholar
Pietsch, W., Mochejska, B. J., Misanovic, Z., et al. 2004, A&A, 413, 879 Google Scholar
Pietsch, W., Haberl, F., Gaetz, T. J., et al. 2009, ApJ, 694, 449 CrossRefGoogle Scholar
Podsiadlowski, P., Langer, N., Poelarends, A. J. T., et al. 2004, ApJ, 612, 1044 CrossRefGoogle Scholar
Postnov, K. A., & Yungelson, L. R. 2006, Living Reviews in Relativity, 9, 6 CrossRefGoogle Scholar
Poutanen, J., Fabrika, S., Valeev, A. F., Sholukhova, O., & Greiner, J. 2013, MNRAS, 432, 506 CrossRefGoogle Scholar
Prestwich, A. H., Kilgard, R., Crowther, P. A., et al. 2007, ApJ, 669, L21 CrossRefGoogle Scholar
Ribó, M., Munar-Adrover, P., Paredes, J. M., et al. 2017, ApJ, 835, L33 CrossRefGoogle Scholar
Rizzi, L., Tully, R. B., Makarov, D., et al. 2007, ApJ, 661, 815 CrossRefGoogle Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444 CrossRefGoogle Scholar
Sana, H., Le Bouquin, J.-B., Lacour, S., et al. 2014, ApJS, 215, 15 CrossRefGoogle Scholar
Sepinsky, J., Kalogera, V., & Belczynski, K. 2005, ApJ, 621, L37 CrossRefGoogle Scholar
Smith, N. 2014, ARA&A, 52, 487 CrossRefGoogle Scholar
Tauris, T. M., Kramer, M., Freire, P. C. C., et al. 2017, ApJ, 846, 170 CrossRefGoogle Scholar
Trudolyubov, S. P. 2013, MNRAS, 435, 3326 CrossRefGoogle Scholar
Tüllmann, R., Gaetz, T. J., Plucinsky, P. P., et al. 2011, ApJS, 193, 31 CrossRefGoogle Scholar
van Kerkwijk, M. H., Geballe, T. R., King, D. L., van der Klis, M., & van Paradijs, J. 1996, A&A, 314, 521 Google Scholar
Williams, B. F., Binder, B. A., Dalcanton, J. J., Eracleous, M., & Dolphin, A. 2013, ApJ, 772, 12 CrossRefGoogle Scholar
Williams, B. F., Hatzidimitriou, D., Green, J., et al. 2014, MNRAS, 443, 2499 CrossRefGoogle Scholar
Williams, B. F., Wold, B., Haberl, F., et al. 2015, ApJS, 218, 9 CrossRefGoogle Scholar
Williams, B. F., Lazzarini, M., Plucinsky, P., et al. 2018, ArXiv e-prints, arXiv:1808.10487Google Scholar