Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T12:53:25.832Z Has data issue: false hasContentIssue false

Unveiling the physical processes that regulate galaxy evolution with SPICA observations

Published online by Cambridge University Press:  29 January 2021

Luigi Spinoglio
Affiliation:
Istituto di Astrofisica e Planetologia Spaziali - INAF, Rome, Via Fosso del Cavaliere 100, 00133, Roma, Italia emails: [email protected], [email protected], [email protected]
Juan A. Fernández-Ontiveros
Affiliation:
Istituto di Astrofisica e Planetologia Spaziali - INAF, Rome, Via Fosso del Cavaliere 100, 00133, Roma, Italia emails: [email protected], [email protected], [email protected]
Sabrina Mordini
Affiliation:
Istituto di Astrofisica e Planetologia Spaziali - INAF, Rome, Via Fosso del Cavaliere 100, 00133, Roma, Italia emails: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To study the dust obscured phase of the galaxy evolution during the peak of the Star Formation Rate (SFR) and the Black Hole Accretion Rate (BHAR) density functions (z = 1–4), rest frame mid-to-far infrared (IR) spectroscopy is needed. At these frequencies, dust extinction is at its minimum and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. The future IR space telescope mission, SPICA, fully redesigned with its 2.5m mirror cooled down to T < 8K, will be able to perform such observations. With SPICA, we will: 1) obtain a direct spectroscopic measurement of the SFR and of the BHAR histories, 2) measure the evolution of metals and dust to establish the matter cycle in galaxies, 3) uncover the feedback and feeding mechanisms in large samples of distant galaxies, either AGN- or starburst-dominated, reaching lookback times of nearly 12 Gyr. SPICA large-area deep surveys will provide low-resolution, mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, and even the potential to uncover the youngest, most luminous galaxies in the first few hundred million years. In this paper a brief review of the scientific preparatory work that has been done in extragalactic astronomy by the SPICA Consortium will be given.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

André, Ph. et al. 2019, PASA, 36, e02910.1017/pasa.2019.20CrossRefGoogle Scholar
Baldry, I. K. et al. 2004, ApJ, 600, 68110.1086/380092CrossRefGoogle Scholar
Bouwens, R. R. et al. 2007, ApJ, 670, 92810.1086/521811CrossRefGoogle Scholar
Delvecchio, I. et al. 2014, MNRAS, 439, 273610.1093/mnras/stu130CrossRefGoogle Scholar
di Matteo, T., Springel, V., & Hernquist, L. 2005, Nat., 433, 60410.1038/nature03335CrossRefGoogle Scholar
Egami, E. et al. 2018, PASA, 35, e04810.1017/pasa.2018.41CrossRefGoogle Scholar
Eisenstein, D. J. et al. 2011, AJ, 142, 7210.1088/0004-6256/142/3/72CrossRefGoogle Scholar
Fernández-Ontiveros, J. A. et al. 2016, ApJS, 226, 19Google Scholar
Fernández-Ontiveros, J. A. et al. 2017, PASA, 34, e05310.1017/pasa.2017.43CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L910.1086/312838CrossRefGoogle Scholar
Fischer, J. et al. 2010, A&A, 518, L41Google Scholar
González-Alfonso, E. et al. 2017, PASA, 34, e05410.1017/pasa.2017.46CrossRefGoogle Scholar
Gruppioni, C. et al. 2013, MNRAS, 432, 2310.1093/mnras/stt308CrossRefGoogle Scholar
Gruppioni, C. et al. 2017, PASA, 34, e05510.1017/pasa.2017.49CrossRefGoogle Scholar
Hopkins, P. F., et al. 2006, ApJS, 163, 5010.1086/499493CrossRefGoogle Scholar
Kaneda, H. et al. 2017, PASA, 34, e05910.1017/pasa.2017.56CrossRefGoogle Scholar
Le Floc’h, E. et al. 2005, ApJ, 632, 16910.1086/432789CrossRefGoogle Scholar
Madau, P. & Dickinson, M. 2014, ARA&A, 52, 41510.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Magorrian, J. et al. 1998, AJ, 115, 228510.1086/300353CrossRefGoogle Scholar
Mullaney, J. R. et al. 2011, MNRAS, 414, 108210.1111/j.1365-2966.2011.18448.xCrossRefGoogle Scholar
Murray, N., Quataert, E., & Thompson, T. A., 2005, ApJ, 618, 56910.1086/426067CrossRefGoogle Scholar
Nagao, T., et al. 2011, A&A, 526, 149Google Scholar
Pereira-Santaella, M. et al. 2017, MNRAS, 470, 121810.1093/mnras/stx1284CrossRefGoogle Scholar
Roelfsema, P. R. et al. 2018, PASA, 35, e03010.1017/pasa.2018.15CrossRefGoogle Scholar
Santini, P. et al. 2010, A&A, 518, L154Google Scholar
Schawinski, K. et al. 2014, MNRAS, 440, 88910.1093/mnras/stu327CrossRefGoogle Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, L1Google Scholar
Spinoglio, L. & Malkan, M. A. 1992, ApJ, 399, 50410.1086/171943CrossRefGoogle Scholar
Spinoglio, L. et al. 2017, PASA, 34, e05710.1017/pasa.2017.48CrossRefGoogle Scholar
Springel, V., Di Matteo, T., & Hernquist, L. 2005, ApJ, 620, L7910.1086/428772CrossRefGoogle Scholar
Strateva, I. et al. 2001, AJ, 122, 186110.1086/323301CrossRefGoogle Scholar