Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:38:13.412Z Has data issue: false hasContentIssue false

Unveiling the fundamental properties of Gamma-Ray Burst host galaxies

Published online by Cambridge University Press:  05 September 2012

Sandra Savaglio*
Affiliation:
Max Planck Institute for extraterrestrial Physics, Giessenbachstr., 85741, Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The galaxies hosting the most energetic explosions in the universe, the gamma-ray bursts (GRBs), are generally found to be low-mass, metal-poor, blue and star forming. However, the majority of the targets investigated so far (less than 100) are at relatively low redshift, z < 2. We know that at low redshift, the cosmic star formation is predominantly in small galaxies. Therefore, at low redshift, long-duration GRBs, which are associated with massive stars, are expected to be in small galaxies. Preliminary investigations of the stellar mass function of z < 1.5 GRB hosts does not indicate that these galaxies are different from the general population of nearby star-forming galaxies. At high-z, it is still unclear whether GRB hosts are different. Recent results indicate that a fraction of them might be in dusty regions of massive galaxies. Remarkable is the a super-solar metallicity measured in the interstellar medium of a z = 3.57 GRB host.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Baldry, I. K., Glazebrook, K., & Driver, S. P., 2008, MNRAS, 388, 945Google Scholar
Bluck, A. F. L., Conselice, C. J., Buitrago, F., et al. 2012, ApJ, 747, 34CrossRefGoogle Scholar
Gilbank, D. G., Bower, R. G., Glazebrook, K., et al. , 2011, MNRAS, 414, 304CrossRefGoogle Scholar
Hayes, M., Schaerer, D. & Östlin, G. 2010 A&A, 509, L5Google Scholar
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003 ApJ, 591, 288Google Scholar
Hunt, L., Palazzi, E., Rossi, A., et al. 2011, ApJ, 736, L36Google Scholar
Juneau, S., Glazebrook, K., Crampton, D., et al. 2005, ApJ, 619, L135CrossRefGoogle Scholar
Krühler, T., Fynbo, J. P. U., Geier, S., et al. , 2012, A&A submitted arXiv:1203.1919Google Scholar
Krühler, T., Greiner, J., Schady, P., et al. 2011, A&A, 534, A108Google Scholar
Levesque, E. M., Kewley, L. J., Graham, J. F., & Fruchter, A. S. 2010, ApJ, 712, L26Google Scholar
Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., & Gnerucci, A., 2010, MNRAS, 408, 2115Google Scholar
Niino, Y., Hashimoto, T., Aoki, K., et al. 2012, PASJ submitted arXiv:1204.0583Google Scholar
Perley, D. A., Modjaz, M., Morgan, A. N., et al. 2011, ApJ submitted arXiv:1112.3963Google Scholar
Pozzetti, L., Bolzonella, M., Zucca, E., et al. , 2010, A&A, 523, A13Google Scholar
Santini, P., Fontana, A., Grazian, A., et al. , 2012, A&A, 538, A33Google Scholar
Savaglio, S., Glazebrook, K., Le Borgne, D., et al. , 2005, ApJ, 635, 260CrossRefGoogle Scholar
Savaglio, S., Glazebrook, K., & Le Borgne, D., 2009, ApJ, 691, 182Google Scholar
Savaglio, S., Rau, A., Greiner, J., et al. 2012, MNRAS, 420, 627Google Scholar
Sobral, D., Smail, I., Best, P. N., et al. , 2012, MNRAS submitted arXiv:1202.3436Google Scholar