Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T11:15:33.894Z Has data issue: false hasContentIssue false

Unveiling an exoplanetary Neptunian atmosphere through multiband transit photometry

Published online by Cambridge University Press:  06 January 2014

V. Nascimbeni
Affiliation:
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell'Osservatorio 3, 35122 Padova, Italy email: [email protected] INAF – Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122 Padova, Italy
G. Piotto
Affiliation:
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell'Osservatorio 3, 35122 Padova, Italy email: [email protected] INAF – Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122 Padova, Italy
I. Pagano
Affiliation:
INAF – Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy
G. Scandariato
Affiliation:
INAF – Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy INAF – Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The “effective” radius of a planet is a function of wavelength due to scattering and/or absorption processes, and we can exploit simultaneous multiband transit photometry to probe the atmospheric scale height and composition. We present new photometric data of the recently discovered “hot Uranus” GJ3470b, gathered with the LBC camera at LBT. Light curves of unprecedented accuracy (0.0012 mag in U and 0.00028 mag in a narrow band centered at 972 nm) allowed us to measure an increasingly larger planetary radius at shorter wavelengths, which we interpret as a signature of Rayleigh scattering by a large scale height atmosphere. Further follow-up observations to confirm this result and probe the presence of specific atomic and molecular species is ongoing.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Adams, E. R., Seager, S., & Elkins-Tanton, L. 2008, ApJ, 673, 1160CrossRefGoogle Scholar
Bonfils, X., et al. 2012, A&A, 546, A27Google Scholar
Charbonneau, D., et al. 2009, Nature, 462, 891Google Scholar
Demory, B.-O., et al. 2013, ApJ, 768, 154CrossRefGoogle Scholar
Fortney, 2005, MNRAS, 364, 649CrossRefGoogle Scholar
Fukui, A., et al. 2013, ApJ, 770, 95CrossRefGoogle Scholar
Haghighipour, N. 2011, ConPh, 52, 403Google Scholar
Howe, A. R. & Burrows, A. S. 2012, ApJ, 756, 176CrossRefGoogle Scholar
Lecavelier Des Etangs, A., et al. 2008, A&A, 481, L83Google Scholar
Lecavelier Des Etangs, A., et al. 2008, A&A, 485, 865Google Scholar
Nascimbeni, V., et al. 2013, A&A, 549, A30Google Scholar
Rogers, L. A. & Seager, S. 2010, ApJ, 716, 1208CrossRefGoogle Scholar
Seager, S. & Deming, D. 2010, ARA&A, 48, 631Google Scholar
Sing, D. K., et al. 2011, MNRAS, 416, 1443Google Scholar
Southworth, J., Maxted, P. F. L., & Smalley, B. 2004, MNRAS, 351, 1277CrossRefGoogle Scholar
Wright, J. T., et al. 2011, PASP, 123, 412CrossRefGoogle Scholar