Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T12:37:05.608Z Has data issue: false hasContentIssue false

The universality hypothesis: binary and stellar populations in star clusters and galaxies

Published online by Cambridge University Press:  27 April 2011

Pavel Kroupa*
Affiliation:
Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is possible to extract, from the observations, distribution functions of the birth dynamical properties of a stellar population, and to also infer that these are quite invariant to the physical conditions of star formation. The most famous example is the stellar IMF, and the initial binary population (IBP) seems to follow suit. A compact mathematical formulation of the IBP can be derived from the data. It has three broad parts: the IBP of the dominant stellar population (0.08–2M), the IBP of the more-massive stars and the IBP of brown dwarfs. These three mass regimes correspond to different physical regimes of star formation but not to structure in the IMF. With this formulation of the IBP it becomes possible to synthesize the stellar-population of whole galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Carney, B. W., Aguilar, L. A., Latham, D. W., & Laird, J. B. 2005, AJ, 129, 1886CrossRefGoogle Scholar
Clarke, C. J. & Pringle, J. E. 1992, MNRAS, 255, 423Google Scholar
Connelley, M. S., Reipurth, B., & Tokunaga, A. T. 2008, AJ, 135, 2526CrossRefGoogle Scholar
Duchêne, G. 1999, A&A, 341, 547Google Scholar
Duquennoy, A. & Mayor, M., 1991, A&A, 248, 485 (DM)Google Scholar
Durisen, R.H. & Sterzik, M.F., 1994, A&A, 286, 84Google Scholar
Fisher, R. T. 2004, ApJ, 600, 769CrossRefGoogle Scholar
Goodwin, S. P. & Whitworth, A. 2007, A&A, 466, 943Google Scholar
Horton, A.J., Bate, M.R., & Bonnell, I.A., 2001, MNRAS, 321, 585CrossRefGoogle Scholar
Kroupa, P. 1995a, MNRAS, 277, 1491 (K1)Google Scholar
Kroupa, P. 1995b, MNRAS, 277, 1507 (K2)CrossRefGoogle Scholar
Kroupa, P. 2002, MNRAS, 330, 707Google Scholar
Kroupa, P. 2008, The Cambridge N-Body Lectures, Lecture Notes in Physics, 760, 181CrossRefGoogle Scholar
Kroupa, P. & Weidner, C. 2003, ApJ, 598, 1076CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARAA, 41, 57CrossRefGoogle Scholar
Marks, M., Oh, S., & Kroupa, P., 2010, submittedGoogle Scholar
Moeckel, N. & Bate, M. R. 2010, MNRAS, 404, 721Google Scholar
Pflamm-Altenburg, J. & Kroupa, P. 2010, MNRAS, 404, 1564Google Scholar
Reid, I. N. & Gizis, J. E. 1997, AJ, 113, 2246Google Scholar
Reipurth, B., 2000, AJ, 120, 3177CrossRefGoogle Scholar
Reipurth, B. & Clarke, C. 2001, AJ, 122, 432CrossRefGoogle Scholar
Sterzik, M.F. & Durisen, R.H., 1998, A&A, 339, 95Google Scholar
Thies, I. & Kroupa, P. 2008, MNRAS, 390, 1200CrossRefGoogle Scholar
Thies, I., Kroupa, P., Goodwin, S. P., Stamatellos, D., & Whitworth, A. P. 2010, ApJ, 717, 577CrossRefGoogle Scholar
Weidner, C., Kroupa, P., & Larsen, S. S. 2004, MNRAS, 350, 1503CrossRefGoogle Scholar
Woitas, J., Leinert, C., Köhler, R. 2001, A&A, 376, 982Google Scholar