Hostname: page-component-599cfd5f84-d4snv Total loading time: 0 Render date: 2025-01-07T07:35:02.989Z Has data issue: false hasContentIssue false

Unidentified Infrared Emission Features

Published online by Cambridge University Press:  05 March 2015

Christine Joblin*
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS; IRAP; 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When referring to unidentified infrared emission features, one has in mind the series of aromatic IR bands (AIBs) between 3.3 and 15 μm that are observed in emission in many environments where UV photons irradiate interstellar matter. These bands are now used by astronomers to classify objects and characterize local physical conditions. However, a deep analysis cannot proceed without understanding the properties of the band carriers. Large polycyclic aromatic hydrocarbon molecules are attractive candidates but interstellar species are still poorly characterized. Various studies emphasize the need for tackling the link between molecular aromatic species, aliphatic material and very small carbonaceous grains. Other unidentified emission features such as the 6.9, 21 and 30 μm bands could be involved in the evolutionary scenario.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Berné, O., Joblin, C., Deville, Y., Smith, J. D., et al. 2007, A&A 469, 575Google Scholar
Berné, O., Joblin, C., Fuente, A., & Menard, F. 2009, A&A 495, 827Google Scholar
Cernicharo, J. & Heras, A. M., Pardo, J. R., et al. 2001, ApJ 546, L127Google Scholar
Chiar, J. E., Pendleton, Y. J., Geballe, T. R., & Tielens, A. G. G. M. 1998, ApJ 507, 281Google Scholar
Fadda, D., Yan, L., Lagache, G., et al. 2010, ApJ 719, 425Google Scholar
Galliano, F., Madden, S. C., Tielens, A. G. G. M., Peeters, E., & Jones, A. P. 2008, ApJ 679, 310Google Scholar
García-Hernández, D. A. & Iglesias-Groth, S., Acosta-Pulido, et al. 2011, ApJ 737, L30Google Scholar
Hudgins, D. M., Bauschlicher, C. W. Jr., & Allamandola, L. J. 2005, ApJ 632, 316CrossRefGoogle Scholar
Joblin, C., Szczerba, R., Berné, O., & Szyszka, C. 2008, A&A 490, 189Google Scholar
Kwok, S., Volk, K., & Hrivnak, B. J. 1999, A&A 350, L35Google Scholar
Kwok, S. & Volk, K., & Bernath, P. 2001, ApJ 554, L87Google Scholar
Pech, C., Joblin, C., & Boissel, P. 2002, A&A 388, 639Google Scholar
Peeters, E., Hony, S., Van Kerckhoven, C., et al. 2002, A&A 390, 1089Google Scholar
Pilleri, P., Montillaud, J., Berné, O., & Joblin, C. 2012, A&A 542, A69Google Scholar
Rapacioli, M., Joblin, C., & Boissel, P. 2005, A&A 429, 193Google Scholar
Ricca, A., Bauschlicher, C. W. Jr., Boersma, C., Tielens, A. G. G. M., & Allamandola, L. J. 2012, ApJ 754, 75Google Scholar
Smith, J. D. T., Draine, B. T., Dale, D. A., et al. 2007, ApJ 656, 770CrossRefGoogle Scholar
van Diedenhoven, B., Peeters, E., Van Kerckhoven, C., et al. 2004, ApJ 611, 928Google Scholar