Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T00:14:59.276Z Has data issue: false hasContentIssue false

Understanding the growth of massive galaxies via stellar populations

Published online by Cambridge University Press:  17 July 2013

Ignacio Ferreras*
Affiliation:
MSSL, University College London, Holmbury St Mary, Dorking, Surrey, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation and evolution of massive galaxies represent one of the most intriguing open problems in astrophysics. Their underlying stellar populations encode valuable information about their past history. Detailed spectroscopic observations allow us to constrain the star formation histories, revealing a complicated mixture of a strong, early formation process, followed by passive evolution in the cores, along with an extended assembly of the outer regions via minor mergers. In this contributed talk, some recent results are presented from the analysis of samples of massive galaxies both at z ~ 0 and moderate redshift.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Auger, M. W., et al. 2010, ApJ Lett., 721, L163Google Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000Google Scholar
Buitrago, F., et al. 2013, MNRAS, 428, 1460Google Scholar
Cappellari, M., et al. 2012, Nature, 484, 485Google Scholar
de la Rosa, I. G., et al. 2011, MNRAS Lett., 418, L74Google Scholar
Dekel, A. & Birnboim, Y. 2006, MNRAS, 368, 2Google Scholar
Fan, L., Lapi, A., De Zotti, G., & Danese, L. 2008, ApJ Lett, 689, L101CrossRefGoogle Scholar
Ferreras, I., et al. 2005, ApJ, 635, 243CrossRefGoogle Scholar
Ferreras, I., et al. 2009a, ApJ, 706, 158Google Scholar
Ferreras, I., et al. 2009b, MNRAS, 396, 1573Google Scholar
Ferreras, I., et al. 2012, AJ, 144, 47Google Scholar
Ferreras, I., et al. 2013, MNRAS Lett., 429, L15CrossRefGoogle Scholar
Hopkins, P. 2012, MNRAS, submitted (arXiv:1204.2835)Google Scholar
La Barbera, F., et al. 2011, ApJL, 740, L41Google Scholar
La Barbera, F., et al. 2012, MNRAS, 426, 2300Google Scholar
Lackner, C., et al. 2012, MNRAS, 425, 641Google Scholar
Mármol-Queraltó, E., et al. 2012, MNRAS, 422, 2187Google Scholar
Mármol-Queraltó, E., et al. 2013, MNRAS, 429, 792CrossRefGoogle Scholar
Naab, T., Johansson, P. H., & Ostriker, J. P. 2009, ApJ Lett., 699, L178Google Scholar
Oser, L., et al. 2010, ApJ, 725, 2312Google Scholar
Pasquali, A., et al. 2006, ApJ, 636, 115CrossRefGoogle Scholar
Pérez-González, P., et al. 2005, ApJ, 630, 82Google Scholar
Pérez-González, P., et al. 2013, ApJ, 762, 46Google Scholar
Sánchez-Blázquez, P., et al. 2007, MNRAS, 377, 759Google Scholar
Spiniello, C., et al. 2012, ApJ Lett, 753, L32Google Scholar
Spolaor, M., et al. 2009, ApJ Lett., 691, L138Google Scholar
Thomas, D., et al. 2005, ApJ, 621, 673Google Scholar
Thomas, J., et al. 2011, MNRAS, 415, 545Google Scholar
Toft, S., et al. 2012, ApJ, 754, 3Google Scholar
Trevisan, M., et al. 2012, ApJ Lett., 752, L27Google Scholar
Trujillo, I., et al. 2007, MNRAS, 382, 109Google Scholar
Trujillo, I., Ferreras, I., & de la Rosa, I. G. 2011, MNRAS, 415, 3903Google Scholar
Valentinuzzi, T., et al. 2010, ApJ, 712, 226Google Scholar
van Dokkum, P., et al. 2008, ApJ Lett., 677, L5Google Scholar
van Dokkum, P. & Brammer, G. 2010, Nature, 468, 940Google Scholar
van Dokkum, P. & Conroy, C. 2010, Nature, 468, 940Google Scholar
Vazdekis, A., et al. 2012, MNRAS, 424, 157Google Scholar
White, S. D. M., Rees, M. J. 1978, MNRAS, 183, 341Google Scholar
York, D., et al. 2000, AJ, 120, 1579CrossRefGoogle Scholar