Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T12:40:21.707Z Has data issue: false hasContentIssue false

Understanding jets from sources straddling the Fanaroff-Riley divide

Published online by Cambridge University Press:  24 March 2015

Preeti Kharb
Affiliation:
Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034, India email: [email protected]
Ethan Stanley
Affiliation:
Dept. of Physics and Astronomy, 525 Northwestern Avenue, West Lafayette, IN 47907, USA
Matthew Lister
Affiliation:
Dept. of Physics and Astronomy, 525 Northwestern Avenue, West Lafayette, IN 47907, USA
Herman Marshall
Affiliation:
MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Chris O'Dea
Affiliation:
University of Manitoba, Winnipeg, MB R3T 2N2Canada Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623, USA
Stefi Baum
Affiliation:
University of Manitoba, Winnipeg, MB R3T 2N2Canada Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Results from Chandra-HST-VLA observations of 13 hybrid sources are presented. Data from ten sources in the literature are analysed along with new data from three hybrid blazars belonging to the MOJAVE sample. Studies of such hybrid sources displaying both FRI and FRII jet characteristics could provide the key to resolving the long-standing Fanaroff-Riley dichotomy issue. A majority of the 13 hybrid sources show FRII-like total radio powers, i.e., they are “hybrid” in radio morphology but not in total radio power. VLBI observations of ten of the 13 sources show that the X-ray jet is on the same side as the one-sided VLBI jet. X-rays are therefore emitted from relativistically-boosted approaching jets. This is consistent with the X-ray emission being IC/CMB in origin in the majority of sources. It is not completely clear from our study that asymmetries in the surrounding medium can create hybrid sources. Hybrid radio morphologies could also be indicative of intrinsically asymmetric jets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Baum, S. A., Zirbel, E. L., & O'Dea, C. P. 1995, ApJ, 451, 88Google Scholar
Bridle, A. H., Hough, D. H., Lonsdale, C. J., Burns, J. O., & Laing, R. A. 1994, AJ, 108, 766CrossRefGoogle Scholar
Bridle, A. H. & Perley, R. A. 1984, ARAA, 22, 319Google Scholar
Celotti, A. & Fabian, A. C. 1993, MNRAS, 264, 228Google Scholar
Cohen, A. S., Lane, W. M., Cotton, W. D., et al. 2007, AJ, 134, 1245Google Scholar
Cooper, N. J., Lister, M. L., & Kochanczyk, M. D. 2007, ApJS, 171, 376CrossRefGoogle Scholar
Fanaroff, B. L. & Riley, J. M. 1974, MNRAS, 167, 31PGoogle Scholar
Gawroński, M. P., Marecki, A., Kunert-Bajraszewska, M., & Kus, A. J. 2006, A&A, 447, 63Google Scholar
Ghisellini, G. & Celotti, A. 2001, A&A, 379, L1Google Scholar
Gopal-Krishna, , Wiita, P. J. 2000, A&A, 363, 507Google Scholar
Harris, D. E. & Krawczynski, H. 2006, ARAA, 44, 463Google Scholar
Hogan, B. S., Lister, M. L., Kharb, P., Marshall, H. L., & Cooper, N. J. 2011, ApJ, 730, 92Google Scholar
Homan, D. C., Wardle, J. F. C., Cheung, C. C., et al. 2002, ApJ, 580, 742Google Scholar
Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., & Green, R. 1989, AJ, 98, 1195CrossRefGoogle Scholar
Kharb, P., Lister, M. L., & Cooper, N. J. 2010, ApJ, 710, 764CrossRefGoogle Scholar
Kharb, P., Lister, M. L., Marshall, H. L., & Hogan, B. S. 2012a, ApJ, 748, 81CrossRefGoogle Scholar
Kharb, P., O'Dea, C. P., Tilak, A., et al. 2012b, ApJ, 754, 1CrossRefGoogle Scholar
Ledlow, M. J. & Owen, F. N. 1996, AJ, 112, 9Google Scholar
Lister, M. L., Aller, H. D., Aller, M. F., et al. 2009, AJ, 137, 3718Google Scholar
Lister, M. L., Kellermann, K. I., Vermeulen, R. C., et al. 2003, ApJ, 584, 135Google Scholar
Marchesini, D., Celotti, A., & Ferrarese, L. 2004, MNRAS, 351, 733CrossRefGoogle Scholar
Marshall, H. L., Schwartz, D. A., Lovell, J. E. J., et al. 2005, ApJS, 156, 13Google Scholar
Meier, D. L. 1999, ApJ, 522, 753Google Scholar
Miller, B. P. & Brandt, W. N. 2009, ApJ, 695, 755Google Scholar
Miller, B. P., Brandt, W. N., Gallagher, S. C., et al. 2006, ApJ, 652, 163CrossRefGoogle Scholar
Morganti, R., Killeen, N. E. B., & Tadhunter, C. N. 1993, MNRAS, 263, 1023Google Scholar
Mullin, L. M. & Hardcastle, M. J. 2009, MNRAS, 398, 1989Google Scholar
Pelletier, G. & Roland, J. 1989, A&A, 224, 24Google Scholar
Sambruna, R. M., Donato, D., Tavecchio, F., et al. 2007, ApJ, 670, 74Google Scholar
Sambruna, R. M., Gambill, J. K., Maraschi, L., et al. 2004, ApJ, 608, 698Google Scholar
Tavecchio, F., Maraschi, L., Sambruna, R. M., & Urry, C. M. 2000, ApJL, 544, L23Google Scholar
Urry, C. M. & Padovani, P. 1995, PASP, 107, 803Google Scholar
Wang, J. C. L., Sulkanen, M. E., & Lovelace, R. V. E. 1992, ApJ, 390, 46Google Scholar