Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T12:32:19.508Z Has data issue: false hasContentIssue false

Uncovering the spatial distribution of stars and dust in z ∼ 2 Submillimeter Galaxies

Published online by Cambridge University Press:  04 June 2020

Philipp Lang
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Eva Schinnerer
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Ian Smail
Affiliation:
Center for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
U. Dudzevičiūtė
Affiliation:
Center for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
A. M. Swinbank
Affiliation:
Center for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The spatial distribution of the dust and stars contains crucial information about the evolutionary pathways of galaxies. We present results of our study combing high-resolution ALMA and HST observations of z ∼ 2 bright sub-millimeter galaxies (SMGs). We have developed a two-dimensional extinction and age correction technique to obtain accurate stellar mass distributions from HST/CANDELS. For the first time, we can directly compare the spatial distribution of assembled stellar mass and ongoing star formation on kpc scales for distant SMGs, shedding light on their highly debated formation mechanisms. We find that the dust distribution is more compact than the stellar component, regardless if the SMG lies on the main sequence or at the starburst regime. Taking the dust emission as a proxy for dust-obscured star formation, our results imply that high-redshift SMGs are experiencing centrally enhanced star formation. These findings suggests that major galaxy interactions are not necessarily the main formation channel for SMGs with secular disk formation remaining a viable option as suggested by state-of-the-art cosmological simulations. The sizes and stellar densities of our z ∼ 2 SMGs agree well with the most compact early-type galaxies in the local Universe, strongly supporting the idea that the latter systems are indeed the descendants of massive SMGs at z ∼ 2.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Almaini, O., Wild, V., Maltby, D. T., et al. 2017, MNRAS, 472, 140110.1093/mnras/stx1957CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 100010.1046/j.1365-8711.2003.06897.xCrossRefGoogle Scholar
Cappellari, M., Emsellem, E., Krajnović, D., et al. 2011, MNRAS, 416, 168010.1111/j.1365-2966.2011.18600.xCrossRefGoogle Scholar
Chen, C.-C., Smail, I., Swinbank, A. M., et al. 2015, ApJ, 799, 194CrossRefGoogle Scholar
Dekel, A., Birnboim, Y., Engel, G., et al. 2009, Nature, 457, 45110.1038/nature07648CrossRefGoogle Scholar
Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJs, 197, 3510.1088/0067-0049/197/2/35CrossRefGoogle Scholar
Hayward, C. C., Kereš, D., Jonsson, P., et al. 2011, ApJ, 743, 15910.1088/0004-637X/743/2/159CrossRefGoogle Scholar
Hayward, C. C., Narayanan, D., Kereš, D., et al. 2013, MNRAS, 428, 252910.1093/mnras/sts222CrossRefGoogle Scholar
Hodge, J. A., Karim, A., Smail, I., et al. 2013, ApJ, 768, 9110.1088/0004-637X/768/1/91CrossRefGoogle Scholar
Hodge, J. A., Swinbank, A. M., Simpson, J. M., et al. 2016, ApJ, 833, 103CrossRefGoogle Scholar
Hunt, L. K., Draine, B. T., Bianchi, S., et al. 2015, A&A, 576, A33Google Scholar
Ikarashi, S., Ivison, R. J., Caputi, K. I, et al. 2015, ApJ, 810, 133CrossRefGoogle Scholar
Kim, D.-C., Evans, A. S., Vavilkin, T., et al. 2013, ApJ, 768, 10210.1088/0004-637X/768/2/102CrossRefGoogle Scholar
Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011, ApJs, 197, 36CrossRefGoogle Scholar
Lang, P., Schinnerer, E., Smail, I., et al. 2019, ApJ, 879, 5410.3847/1538-4357/ab1f77CrossRefGoogle Scholar
Miettinen, O., Delvecchio, I., Smolčić, V., et al. 2017, A&A, 606, A17Google Scholar
Narayanan, D., Dey, A., Hayward, C. C., et al. 2010, MNRAS, 407, 170110.1111/j.1365-2966.2010.16997.xCrossRefGoogle Scholar
Simpson, J. M., Smail, I., Swinbank, A. M., et al. 2015a, ApJ, 799, 8110.1088/0004-637X/799/1/81CrossRefGoogle Scholar
Stach, S. M., Smail, I., Swinbank, A. M., et al. 2018, ApJ, 860, 161CrossRefGoogle Scholar
Tadaki, K.-i., Genzel, R., Kodama, T., et al. 2017a, ApJ, 834, 13510.3847/1538-4357/834/2/135CrossRefGoogle Scholar
Toft, S., Zabl, J., Richard, J., et al. 2017, Nature, 546, 51010.1038/nature22388CrossRefGoogle Scholar
van der Wel, A., Chang, Y.-Y., Bell, E. F., et al. 2014, ApJl, 792, L610.1088/2041-8205/792/1/L6CrossRefGoogle Scholar
Swinbank, et al. 2006, MNRAS, 371, 46510.1111/j.1365-2966.2006.10673.xCrossRefGoogle Scholar
Swinbank, A. M., Simpson, J. M., Smail, I., et al. 2014, MNRAS, 438, 126710.1093/mnras/stt2273CrossRefGoogle Scholar
Whitaker, K. E., Franx, M., Leja, J., et al. 2014, ApJ, 795, 10410.1088/0004-637X/795/2/104CrossRefGoogle Scholar