Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T09:38:05.375Z Has data issue: false hasContentIssue false

Uncovering dwarf elliptical evolution through spatially resolved spectroscopy

Published online by Cambridge University Press:  30 October 2019

Samantha J. Penny
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, PO1 3FX, United Kingdom email: [email protected]
the MaNGA collaboration
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, PO1 3FX, United Kingdom email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using spatially resolved spectroscopy from the SDSS-IV Mapping Nearby Galaxies at APO (MaNGA) survey, we identify 69 dwarf elliptical (dE) galaxies in the nearby Universe fainter than Mr = −19 (MB = −18), selected independently of morphology and environment. The majority exhibit coherent rotation in their stellar kinematics, consistent with an origin as morphologically transformed disk galaxies. Six galaxies in this dE sample appear to host Active Galactic Nuclei (AGN) that are likely preventing current star formation through maintenance mode feedback. The ionised gas component of these dEs is typically kinematically offset from the stellar component, suggesting the gas is either recently accreted or outflowing. We therefore demonstrate the potential of IFU spectroscopy for understanding the physical properties of dwarf galaxies in detail.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5 CrossRefGoogle Scholar
Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017, AJ, 154, 28 CrossRefGoogle Scholar
Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, ApJ, 798, 7 CrossRefGoogle Scholar
Cheung, E., Bundy, K., Cappellari, M., et al. 2016, Nature, 533, 504 CrossRefGoogle Scholar
Lisker, T., Grebel, E. K., & Binggeli, B. 2006, AJ, 132, 497 CrossRefGoogle Scholar
Lisker, T., Janz, J., Hensler, G., et al. 2009, ApJL, 706, L124 CrossRefGoogle Scholar
Moran, E. C., Shahinyan, K., Sugarman, H. R., Vélez, D. O., & Eracleous, M. 2014, AJ, 148, 136 CrossRefGoogle Scholar
Penny, S. J., & Conselice, C. J. 2008, MNRAS, 383, 247 CrossRefGoogle Scholar
Penny, S. J., Masters, K. L., Weijmans, A.-M., et al. 2016 MNRAS, 462, 3955 CrossRefGoogle Scholar
Penny, S. J., Masters, K. L., Smethurst, R., et al. 2018, MNRAS, 476, 979 CrossRefGoogle Scholar
Reines, A. E., Greene, J. E., & Geha, M. 2013, ApJ, 775, 116 CrossRefGoogle Scholar
Sartori, L. F., Schawinski, K., Treister, E., et al. 2015, MNRAS, 454, 3722 CrossRefGoogle Scholar
Toloba, E., Guhathakurta, P., Boselli, A., et al. 2015, ApJ, 799, 172 CrossRefGoogle Scholar