Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T04:26:32.475Z Has data issue: false hasContentIssue false

Uncertainties in tidal theory: Implications for bloated hot Jupiters

Published online by Cambridge University Press:  10 November 2011

Jérémy Leconte
Affiliation:
École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France; Université Lyon 1, Villeurbanne, F-69622, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon; ([email protected], [email protected], [email protected])
Gilles Chabrier
Affiliation:
École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France; Université Lyon 1, Villeurbanne, F-69622, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon; ([email protected], [email protected], [email protected])
Isabelle Baraffe
Affiliation:
École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France; Université Lyon 1, Villeurbanne, F-69622, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon; ([email protected], [email protected], [email protected]) School of Physics, University of Exeter, Stocker Road, Exeter EX4 4PE, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thanks to the combination of transit photometry and radial velocity doppler measurements, we are now able to constrain theoretical models of the structure and evolution of objects in the whole mass range between icy giants and stars, including the giant planet/brown dwarf overlapping mass regime (Leconte et al. 2009). In the giant planet mass range, the significant fraction of planets showing a larger radius than predicted by the models suggests that a missing physical mechanism which is either injecting energy in the deep convective zone or reducing the net outward thermal flux is taking place in these objects. Several possibilities have been suggested for such a mechanism:

  • downward transport of kinetic energy originating from strong winds generated at the planet's surface (Showman & Guillot 2002),

  • enhanced opacity sources in hot-Jupiter atmospheres (Burrows et al. 2007),

  • ohmic dissipation in the ionized atmosphere (Batygin & Stevenson 2010),

  • (inefficient) layered or oscillatory convection in the planet's interior (Chabrier & Baraffe 2007),

  • Tidal heating due to circularization of the orbit, as originally suggested by Bodenheimer, Lin & Mardling (2001).

Here we first review the differences between current models of tidal evolution and their uncertainties. We then revisit the viability of the tidal heating hypothesis using a tidal model which treats properly the highly eccentric and misaligned orbits commonly encountered in exoplanetary systems. We stress again that the low order expansions in eccentricity often used in constant phase lag tidal models (i.e. constant Q) necessarily yields incorrect results as soon as the (present or initial) eccentricity exceeds ~ 0.2, as can be rigorously demonstrated from Kepler's equations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Batygin, K. & Stevenson, D. J. 2010, ApJ, 714, L238Google Scholar
Bodenheimer, P., Lin, D. N. C., & Mardling, R. A. 2001, ApJ, 548, 466Google Scholar
Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007, ApJ, 661, 502CrossRefGoogle Scholar
Chabrier, G. & Baraffe, I. 2007, ApJ, 661, L81CrossRefGoogle Scholar
Cottereau, L., Aleshkina, E., & Souchay, J. 2010, A&A, 523, A87Google Scholar
Danjon, A. 1980, Astronomie generale. Astronomie spherique et elements de mecanique celeste, ed. Danjon, A.Google Scholar
Eggleton, P. P., Kiseleva, L. G., & Hut, P. 1998, ApJ, 499, 853Google Scholar
Ferraz-Mello, S., Rodríguez, A., & Hussmann, H. 2008, Celestial Mechanics and Dynamical Astronomy, 101, 171CrossRefGoogle Scholar
Goldreich, P. & Soter, S. 1966, Icarus, 5, 375CrossRefGoogle Scholar
Hansen, B. M. S. 2010, ApJ, 723, 285Google Scholar
Ibgui, L., Spiegel, D. S., & Burrows, A. 2011, ApJ, 727, id.75Google Scholar
Jackson, B., Greenberg, R., & Barnes, R. 2008, ApJ, 681, 1631Google Scholar
Leconte, J., Baraffe, I., Chabrier, G., Barman, T., & Levrard, B. 2009, A&A, 506, 385Google Scholar
Leconte, J., Chabrier, G., Baraffe, I., & Levrard, B. 2010, A&A, 516, A64+Google Scholar
Miller, N., Fortney, J. J., & Jackson, B. 2009, ApJ, 702, 1413CrossRefGoogle Scholar
Peale, S. J. & Cassen, P. 1978, Icarus, 36, 245CrossRefGoogle Scholar
Showman, A. P. & Guillot, T. 2002, A&A, 385, 166Google Scholar
Wisdom, J. 2008, Icarus, 193, 637CrossRefGoogle Scholar