No CrossRef data available.
Article contents
The UCD Population of the Coma Cluster
Published online by Cambridge University Press: 31 March 2017
Abstract
UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but consensus is that they formed either during major galaxy mergers as mergers of super massive star clusters, are simply the high mass end of the globular cluster luminosity function and formed in the same way as globular clusters, or that they formed from the threshing of galaxies and are remnant nuclear star clusters, which themselves may have formed from the mergers of globular star clusters within galaxies. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large sample within the core region of the Coma cluster, we will use the population size, properties, and spatial distribution, and comparison with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In particular, previously we have found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size, we are investigating whether the color correlation with host persists and whether the UCD population is consistent with, or in excess of, the bright end of the GCLF. We present initial results from the survey.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 12 , Symposium S316: Formation, evolution, and survival of massive star clusters , August 2015 , pp. 253 - 254
- Copyright
- Copyright © International Astronomical Union 2017