Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T12:39:54.287Z Has data issue: false hasContentIssue false

The two-phase gas outflow in the Circinus Galaxy

Published online by Cambridge University Press:  29 March 2021

M. A. Fonseca-Faria
Affiliation:
Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, CEP 12227-010, São José dos Campos - SP, Brazil email: [email protected]
A. Rodríguez-Ardila
Affiliation:
Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, CEP 12227-010, São José dos Campos - SP, Brazil email: [email protected] Laboratório Nacional de Astrofísica, R. dos Estados Unidos, CEP 37504-364, Itajubá - MG, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We employ Multi Unit Spectroscopic Explorer (MUSE) data to study the ionized and very ionized gas phase of the feedback in Circinus, the closest Seyfert 2 galaxy. The analysis of the nebular emission allowed us to detect a remarkable high-ionization gas outflow, out of the galaxy plane, traced by the coronal lines [Fe viii] 6089Å and [Fe x] 6374Å, extending up to 700 parsecs north-west from the nucleus. The gas kinematics reveal expanding gas shells with velocities of a few hundred km s-1, spatially coincident with prominent hard X-ray emission detected by Chandra. Density and temperature sensitive line ratios show that the extended high-ionization gas is characterized by a temperature of up to 18000 K and a gas density of ne > 102 cm−3. We propose two scenarios consistent with the observations to explain the high-ionization component of the outflow: an active galactic nuclei (AGN) ejection that took place ⁓105 yr ago or local gas excitation by shocks produced by the passage of a radio jet.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000 CrossRefGoogle Scholar
Cid-Fernandes, R., Mateus, A., Sodré, L., et al. 2005, MNRAS, 358, 363 CrossRefGoogle Scholar
Contini, M. & Viegas, S. M. 2001, Apj, 132, 211 Google Scholar
Kormendy, J. & Richstone, D. 1995, ARAA, 33, 581 10.1146/annurev.aa.33.090195.003053CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, arXiv:1308.6483Google Scholar
Mingozzi, M., Cresci, G., Venturi, G., et al. 2019, A&A, 622, A146 Google Scholar
Rodrguez-Ardila, A., Prieto, M. A., Viegas, S., et al. 2006, Apj, 6Google Scholar
Wylezalek, D. & Morganti, R. 2018, Nature Astronomy, 2, 181 CrossRefGoogle Scholar