Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T03:48:42.949Z Has data issue: false hasContentIssue false

Twist and writhe of δ-island active regions

Published online by Cambridge University Press:  26 August 2011

M. C. López Fuentes
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET-UBA), CC 67, Suc 28, 1428 Buenos Aires, Argentina e-mail: [email protected]
C. H. Mandrini
Affiliation:
Instituto de Astronomía y Física del Espacio (CONICET-UBA), CC 67, Suc 28, 1428 Buenos Aires, Argentina e-mail: [email protected]
P. Démoulin
Affiliation:
Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195, Meudon Principal Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the magnetic helicity properties of a set of peculiar active regions (ARs) including δ-islands and other high-tilt bipolar configurations. These ARs are usually identified as the most active in terms of flare and CME production. Due to their observed structure, they have been associated with the emergence of magnetic flux tubes that develop a kink instability. Our main goal is to determine the chirality of the twist and writhe components of the AR magnetic helicity in order to set constrains on the possible mechanisms producing the flux tube deformations. We determine the magnetic twist comparing observations of the AR coronal structure with force-free models of the magnetic field. We infer the flux-tube writhe from the rotation of the main magnetic bipole during the observed evolution. From the relation between the obtained twist and writhe signs we conclude that the development of the kink instability cannot be the single mechanism producing deformed flux-tubes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Archontis, V. & Hood, A. W. 2010, Astron. Astrophys, 514, A56Google Scholar
Fan, Y., Zweibel, E. G., Linton, M. G., & Fisher, G. H. 1999, Astrophys. J., 521, 460Google Scholar
Fisher, G. H., Fan, Y., Longcope, D. W., Linton, M. G., & Pevtsov, A. A. 2000, Solar Phys., 192, 119Google Scholar
Holder, Z. A., Canfield, R. C., McMullen, R. A., Nandy, D., Howard, R. F., & Pevtsov, A. A. 2004, Astrophys. J., 611, 1149Google Scholar
López Fuentes, M. C., Demoulin, P., Mandrini, C. H. & van Driel-Gesztelyi, L. 2000, Astrophys. J., 544, 540Google Scholar
López Fuentes, M. C., Démoulin, P., Mandrini, C. H., Pevtsov, A. A. & van Driel-Gesztelyi, L. 2003, Astron. Astrophys, 397, 305Google Scholar
López Fuentes, M. C. & Mandrini, C. H. 2008, Boletín de la Asociación Argentina de Astronomía La Plata Argentina, 51, 31Google Scholar
López Fuentes, M. C., Mandrini, C. H., & Démoulin, P. 2009, Proceedings IAU Symposium No. 264, Solar and Stellar variability - Impact on Earth and Planets, Kosovichev, A. G. Editor, 102Google Scholar
Schrijver, C. J. & Zwaan, C. 2000, Solar and stellar magnetic activity / Carolus J. Schrijver, Cornelius Zwaan. New York: Cambridge University Press, 2000. (Cambridge astrophysics series; 34)Google Scholar
Tian, L., Alexander, D., Liu, Y., & Yang, J. 2005, Solar Phys., 229, 63Google Scholar