Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T17:47:04.909Z Has data issue: false hasContentIssue false

Turbulent heating of coronal active regions

Published online by Cambridge University Press:  01 September 2007

Daniel O. Gómez
Affiliation:
Department of Physics, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, (1428) Buenos Aires, Argentina email: [email protected]
Pablo Dmitruk
Affiliation:
Department of Physics, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, (1428) Buenos Aires, Argentina email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetohydrodynamic turbulence has been proposed as a mechanism for the heating of coronal active regions, and has therefore been actively investigated in recent years. According to this scenario, a turbulent regime is driven by footpoint motions. The energy being pumped this way into active region loops, is efficiently transferred to small scales due to a direct energy cascade. The ensuing generation of fine scale structures, which is a natural outcome of turbulent regimes, helps to enhance the dissipation of either waves or DC currents.

We present an updated overview of recent results on turbulent coronal heating. To illustrate this theoretical scenario, we simulate the internal dynamics of a coronal loop within the reduced MHD approximation. The application of a stationary velocity field at the photospheric boundary leads to a turbulent stationary regime after several photospheric turnover times. This regime is characterized by a broadband power spectrum and energy dissipation rate levels compatible with the heating requirements of active region loops. Also, the energy dissipation rate displays a complex superposition of impulsive events, which we associate to the so-called nanoflares. A statistical analysis yields a power law distribution as a function of their energies, which is consistent with those obtained from observations. We also study the distributions of peak dissipation rate and duration of these events.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aschwanden, M.J. 2004, in Physics of the Solar Corona. An Introduction, Springer-Verlag, Berlin.Google Scholar
Aschwanden, M.J., & Parnell, C.E. 2002, ApJ, 572, 1048.CrossRefGoogle Scholar
Benz, A.O., & Krucker, S. 2002, ApJ 568, 412.CrossRefGoogle Scholar
Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., & Vulpiani, A. 1999, Phys. Rev. Lett., 83, 4662.CrossRefGoogle Scholar
Buchlin, E., Galtier, S., & Velli, M. 2005, Astron. Astrophys., 436, 355.CrossRefGoogle Scholar
Buchlin, E., & Velli, M. 2007, ApJ, 662, 701.CrossRefGoogle Scholar
Crosby, N.B., Aschwanden, M.J., & Dennis, B.R. 1993, Solar Phys., 143, 275.CrossRefGoogle Scholar
Demoulin, P., van Driel-Gesztelyi, L., Mandrini, C.H., Klimchuk, J.A., & Harra, L. 2003, ApJ, 586, 592.CrossRefGoogle Scholar
Dmitruk, P., & Gómez, D.O. 1997, ApJ, 484, L83.CrossRefGoogle Scholar
Dmitruk, P., Gómez, D.O., & DeLuca, E. 1998, ApJ, 505, 974.CrossRefGoogle Scholar
Dmitruk, P., & Gómez, D.O. 1999, ApJ, 527, L63.CrossRefGoogle Scholar
Dmitruk, P., Gómez, D.O., & Matthaeus, W.H. 2003, Phys. Plasmas, 10, 3584.CrossRefGoogle Scholar
Einaudi, G., Velli, M., Politano, H., & Pouquet, A. 1996, ApJ, 457, L113.CrossRefGoogle Scholar
Galsgaard, K., & Nordlund, A. 1996, J. Geophys. Res., 101, 13445.CrossRefGoogle Scholar
Galtier, S. 1999, ApJ, 521, 483.CrossRefGoogle Scholar
Georgoulis, M., Velli, M., & Einaudi, G. 1998, ApJ, 497, 957.CrossRefGoogle Scholar
Gómez, D.O. 1990, Fund. Cosmic Phys., 14, 361.Google Scholar
Gómez, D.O., & Ferro Fontán, C. 1988, Solar Phys., 116 33.CrossRefGoogle Scholar
Gómez, D.O., & Ferro Fontán, C. 1992, ApJ, 394, 662.CrossRefGoogle Scholar
Gudiksen, B.V., & Nordlund, A. 2002, ApJ, 572, L113.CrossRefGoogle Scholar
Hendrix, D.L., & van Hoven, G. 1996, ApJ, 467, 887.CrossRefGoogle Scholar
Heyvaerts, J., & Priest, E.R. 1983, Astron. Astrophys., 117, 220.Google Scholar
Heyvaerts, J., & Priest, E.R. 1992, ApJ, 390, 297.CrossRefGoogle Scholar
Hudson, H.S. 1991, Solar Phys., 133, 357.CrossRefGoogle Scholar
Longcope, D.W., & Sudan, R.N. 1994, ApJ, 437, 491.CrossRefGoogle Scholar
Mandrini, C.H., Demoulin, P., & Klimchuk, J.A. 2000, ApJ, 530, 999.CrossRefGoogle Scholar
Mikić, Z., Schnack, D.D., & van Hoven, G. 1989, ApJ, 338, 1148.CrossRefGoogle Scholar
Milano, L.J., Gómez, D.O., & Martens, P.C.H. 1997, ApJ, 490, 442CrossRefGoogle Scholar
Narain, U., & Ulmschneider, P. 1990, Space Sci. Rev., 54, 377.CrossRefGoogle Scholar
Narain, U., & Ulmschneider, P. 1996, Space Sci. Rev., 75, 453.CrossRefGoogle Scholar
Nigro, G., Malara, F., Carbone, V., & Veltri, P. 2004, Phys. Rev. Lett., 92, 194501.CrossRefGoogle Scholar
Parker, E.N. 1972, ApJ, 174, 499.CrossRefGoogle Scholar
Parker, E.N. 1988, ApJ, 330, 474.CrossRefGoogle Scholar
Rappazzo, A.F., Velli, M., Einaudi, G., & Dahlburg, R.B. 2007, ApJ, 657, L47.CrossRefGoogle Scholar
Shimizu, T. 1995, Publ Astr. Soc. Japan, 47, 251.Google Scholar
Strauss, H. 1976, Phys. Fluids, 19, 134CrossRefGoogle Scholar
van Ballegooijen, A.A. 1986, ApJ, 311, 1001.CrossRefGoogle Scholar
Watkins, N.W., Oughton, S., & Freeman, M.P. 2001, Planetary and Space Sci., 49, 1233.CrossRefGoogle Scholar
Zirker, J.B. 1993, Solar Phys., 148, 43.CrossRefGoogle Scholar