Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T19:31:48.220Z Has data issue: false hasContentIssue false

Turbulence in the molecular interstellar medium

Published online by Cambridge University Press:  01 August 2006

Mark H. Heyer
Affiliation:
Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA email: [email protected]
Chris Brunt
Affiliation:
School of Physics, University of Exeter, Stocker Road, EX4 4QL, United Kingdom email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The observational record of turbulence within the molecular gas phase of the interstellar medium is summarized. We briefly review the analysis methods used to recover the velocity structure function from spectroscopic imaging and the application of these tools on sets of cloud data. These studies identify a near-invariant velocity structure function that is independent of the local environment and star formation activity. Such universality accounts for the cloud-to-cloud scaling law between the global line-width and size of molecular clouds found by Larson (1981) and constrains the degree to which supersonic turbulence can regulate star formation. In addition, the evidence for large scale driving sources necessary to sustain supersonic flows is summarized.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Brunt, C.M. 2003, ApJ 584, 293CrossRefGoogle Scholar
Brunt, C.M., Heyer, M.H., Vazquez-Semadeni, E., & Pichardo, B. 2003, ApJ 595, 824CrossRefGoogle Scholar
Brunt, C.M., & Heyer, M.H. 2002, ApJ 566, 276Google Scholar
Elmegreen, B.G., & Scalo, J. 2004, ARAA, 42, 211Google Scholar
Goldreich, P., & Sridhar, S. 1995, ApJ 438, 763Google Scholar
Heyer, M.H., & Schloerb, F.P. 1997, ApJ 475, 173Google Scholar
Heyer, M.H. 1999, in: Mangum, J.G. & Radford, Simon J.E. (eds.), Imaging at Radio through Submillimeter Wavelengths (ASP-CS), 217, 213Google Scholar
Heyer, M.H., & Brunt, C.M. 2004, ApJ 615, L45CrossRefGoogle Scholar
Heyer, M.H., Williams, J.P., & Brunt, C.M. 2006, ApJ 643, 956CrossRefGoogle Scholar
Larson, R.B. 1981, MNRAS 194, 809CrossRefGoogle Scholar
Lazarian, A., & Pogosyan, D. 2000, ApJ 537, 720Google Scholar
Mac Low, M. 1999, ApJ 524, 169Google Scholar
Mac Low, M., & Klessen, R.S. 2004, Rev. Mod. Phys. 76, 125CrossRefGoogle Scholar
Miesch, M.S., & Bally, J. 1994, ApJ 429, 645CrossRefGoogle Scholar
Ossenkopf, V., Esquivel, A., Lazarian, A., & Stutzki, J. 2006, A&A 452, 2230Google Scholar
Padoan, P., & Nordlund, A. 2002, ApJ 576, 870CrossRefGoogle Scholar
Wilson, R.W., Jefferts, K.B., & Penzias, A.A. 1970, ApJ 161, L43CrossRefGoogle Scholar