Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:34:36.075Z Has data issue: false hasContentIssue false

Turbulence in high latitude molecular clouds

Published online by Cambridge University Press:  01 August 2006

S. N. Shore
Affiliation:
Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Pisa 56127, Italy email: [email protected], [email protected] INFN-Sezione di Pisa
T. N. LaRosa
Affiliation:
Department of Biological and Physical Sciences, Kennesaw State University, Kennesaw, [email protected]
L. Magnani
Affiliation:
Departiment of Physics, University of Georgia, Athens, GAUSA email: [email protected]
R. J. Chastain
Affiliation:
Departiment of Physics, University of Georgia, Athens, GAUSA email: [email protected]
F. Costagliola
Affiliation:
Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Pisa 56127, Italy email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We summarize a continuing investigation of turbulence in high-latitude translucent molecular clouds. These low mass (~50–100 M), nearby (~100 pc), non-star forming clouds appear to be condensing out of the atomic cirrus. Unlike star-forming clouds the velocity fields in the clouds must be driven by external processes. Our detailed mapping of the clouds MBM 3,16 and 40 indicates that the dynamics in these clouds result from the combination of shear-flow and thermal instabilities, not shocks. These clouds also show coherent structures, non-Gaussian PDFs but no clear velocity-size relation. Lastly, the energetics of these clouds indicate that radiative loss may terminate the cascade before local heating takes place.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Caselli, P., & Myers, P. C. 1995, ApJ 446, 665CrossRefGoogle Scholar
Chol Minh, Y. C. Y., Kim, H-G, Lee, Y., Park, H., Kim, K-T, & Kim, S. J. 2003, New Astr. 8, 795CrossRefGoogle Scholar
Dame, T. M., Elmegreen, B. G., Cohen, R. S., & Thaddeus, P. 1986, ApJ 305, 892CrossRefGoogle Scholar
Elmegreen, B. G., & Scalo, J. 2004, ARA&A 42, 211Google Scholar
Falgarone, E., Panis, J. F., Heithausen, A., & Perault, M. et al. 1998, A&A 331, 669Google Scholar
Falgarone, E., & Phillips, T. G. 1990, ApJ 359, 344CrossRefGoogle Scholar
Goodman, A. A., Barranco, J. A., Wilner, D. P., & Heyer, M. H. 1998, ApJ 504, 223Google Scholar
Heyer, M. H., & Brunt, C. M. 2004, ApJ 615, L45CrossRefGoogle Scholar
Juvela, M., Padoan, P., & Nordlund, Å. 2001, ApJ 563, 853CrossRefGoogle Scholar
Kawamura, A., Onishi, T., Yonekura, Y., Dobashi, K., Mizuno, A., Ogawa, H., & Fukui, Y. 1998, ApJS 117, 387CrossRefGoogle Scholar
LaRosa, T. N., Shore, S. N., & Magnani, L. 1999, ApJ 512, 761CrossRefGoogle Scholar
Larson, R. B. 1981, MNRAS 194, 809CrossRefGoogle Scholar
Magnani, L., LaRosa, T. N., & Shore, S. N. 1993, ApJ 402, 226CrossRefGoogle Scholar
McComb, W. D. 1992, The Physics of Fluid Turbulence, (London: Oxford Univ. Press)Google Scholar
Miesch, M. S., & Bally, J. 1994, ApJ 429, 625CrossRefGoogle Scholar
Miesch, M. S., Scalo, J., & Bally, J. 1999, ApJ 524, 895CrossRefGoogle Scholar
Minier, J., & Peirano, E. 2001, Phys. Rep. 352, 1CrossRefGoogle Scholar
Ossenkopf, V., & Mac Low, M.-M. 2002, A&A 390, 307Google Scholar
Pety, J., & Falgarone, E. 2003, A&A 412, 417Google Scholar
Robinson, S. K. 1991, Ann. Rev. Fluid Mech. 23, 601CrossRefGoogle Scholar
Shore, S. N., Magnani, L., LaRosa, T. N., & McCarthy, M. N. 2003, ApJ 593, 413CrossRefGoogle Scholar
Shore, S. N., LaRosa, T. N., Chastain, R. J., & Magnani, L. 2006, A&A 457, 197Google Scholar
Solomon, P. M., Rivolo, A. R., Barret, J., & Yahil, A. 1987, ApJ 319, 730CrossRefGoogle Scholar
Sreenivasan, K. R., & Antonia, R. A. 1997, Ann. Rev. Fluid Mech. 29, 435CrossRefGoogle Scholar
Yonekura, Y., Dobashi, K., Mizuno, A,., Ogawa, H., & Fukui, Y. 1997, ApJS 110, 21CrossRefGoogle Scholar