Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:02:00.391Z Has data issue: false hasContentIssue false

Turbulence and dynamo interlinks

Published online by Cambridge University Press:  18 July 2013

E. M. de Gouveia Dal Pino
Affiliation:
IAG, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil email: [email protected]
R. Santos-Lima
Affiliation:
IAG, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil email: [email protected]
G. Kowal
Affiliation:
IAG, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil email: [email protected]
D. Falceta-Gonçalves
Affiliation:
EACH, Universidade de São Paulo, Rua Arlindo Bettio 1000, São Paulo 03828-000, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The role of turbulence in astrophysical environments and its interplay with magnetic fields is still highly debated. In this lecture, we will discuss this issue in the framework of dynamo processes. We will first present a very brief summary of turbulent dynamo theories, then will focus on small scale turbulent dynamos and their particular relevance on the origin and maintenance of magnetic fields in the intra-cluster media (ICM) of galaxies. In these environments, the very low density of the flow requires a collisionless-MHD treatment. We will show the implications of this approach in the turbulent amplification of the magnetic fields in these environments. To finalize, we will also briefly address the connection between MHD turbulence and fast magnetic reconnection and its possible implications in the diffusion of magnetic flux in the dynamo process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Batchelor, G. K. 1950, Royal Society of London Proceedings Series A, 201, 405 Google Scholar
Beresnyak, A. 2012, Physical Review Letters, 108, 035002 CrossRefGoogle Scholar
Biermann, L. & Schlüter, A. 1951, Physical Review, 82, 863 CrossRefGoogle Scholar
Brandenburg, A., Sokoloff, D., & Subramanian, K. 2012, SSR, 169, 123 Google Scholar
Brandenburg, A. & Subramanian, K. 2005, Phys. Rep., 417, 1 CrossRefGoogle Scholar
Cattaneo, F. & Hughes, D. 2006, J. Fluid Mech., 553, 401 CrossRefGoogle Scholar
Chandran, B. D. G., Dennis, T. J., Quataert, E., & Bale, S. D. 2011, ApJ, 743, 197 CrossRefGoogle Scholar
Chew, G. F., Goldberger, M. L., & Low, F. E. 1956, Roy. Soc. Lon. Proc. Ser. A, 236, 112 Google Scholar
de Gouveia Dal Pino, E. M., Santos-Lima, R., Lazarian, A., et al. 2011, IAU Symp., 274, 333 Google Scholar
de Gouveia Dal Pino, E. M., Leão, M. R. M., Santos-Lima, R., et al. 2012, Phys. Scripta, 86, 018401 CrossRefGoogle Scholar
Enßlin, T., Vogt, C., & Pfrommer, C. 2005, The Magnetized Plasma in Galaxy Evolution, 231Google Scholar
Elsasser, W. M. 1956, Reviews of Modern Physics, 28, 135 CrossRefGoogle Scholar
Eyink, G. L. 2011, Phys. Rev. E, 83, 056405 CrossRefGoogle Scholar
Eyink, G. L., Lazarian, A., & Vishniac, E. T. 2011, ApJ, 743, 51 CrossRefGoogle Scholar
Gary, S. P. 1993, Theory of Space Plasma Microinstabilities, by Gary, S. Peter, pp. 193. ISBN 0521431670. Cambridge, UK: Cambridge University Press, September 1993.CrossRefGoogle Scholar
Govoni, F. & Feretti, L. 2004, International Journal of Modern Physics D, 13, 1549 CrossRefGoogle Scholar
Guerrero, G. & de Gouveia Dal Pino, E. M. 2008, A&A, 485, 267 Google Scholar
Guerrero, G. & de Gouveia Dal Pino, E. M. 2010, Highlights of Astronomy, 15, 347 Google Scholar
Haugen, N. E. L., Brandenburg, A., & Dobler, W. 2003, ApJ Letters, 597, L141 CrossRefGoogle Scholar
Haugen, N. E., Brandenburg, A., & Dobler, W. 2004, Phys. Rev. E, 70, 016308 CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2008, A&A, 491, 353 Google Scholar
Kazantsev, A.P., Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 53, 18061809 (1967) [English translation, JETP 26, 1031 (1968)]Google Scholar
Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K. 2009, ApJ, 700, 63 CrossRefGoogle Scholar
Kowal, G., Falceta-Gonçalves, D. A., & Lazarian, A. 2011, New Journal of Physics, 13, 053001 CrossRefGoogle Scholar
Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K. 2012, Nonlinear Processes in Geophysics, 19, 297 CrossRefGoogle Scholar
Kulsrud, R. M. 1983, Basic Plasma Physics: Selected Chapters, Handbook of Plasma Phys., Vol 1, 1 Google Scholar
Kulsrud, R. M. & Anderson, S. W. 1992, ApJ, 396, 606 CrossRefGoogle Scholar
Kunz, M. W., Schekochihin, A. A., Cowley, S. C., Binney, J. J., & Sanders, J. S. 2011, MNRAS, 410, 2446 CrossRefGoogle Scholar
Lazarian, A. 2005, in: de Gouveia dal Pino, E. M., Lugones, G., & Lazarian, A. (eds.), Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures., American Institute of Physics Conference Series No. 784, p. 42 Google Scholar
Lazarian, A. 2006, Astronomische Nachrichten, 327, 609 CrossRefGoogle Scholar
Lazarian, A. 2011, arXiv:1111.0694Google Scholar
Lazarian, A. & Vishniac, E. T. 1999, ApJ, 517, 700 CrossRefGoogle Scholar
Lazarian, A., Eyink, G. L., & Vishniac, E. T. 2012, Physics of Plasmas, 19, 012105 CrossRefGoogle Scholar
Leão, M. R. M., de Gouveia Dal Pino, E. M., Santos-Lima, R., & Lazarian, A. 2012, arXiv:1209.1846Google Scholar
Parker, E. N. 1979, Oxford, Clarendon Press; New York, Oxford University Press, 1979, 858 p.Google Scholar
Richardson, L. F. 1926, Royal Society of London Proceedings Series A, 110, 709 Google Scholar
Samsonov, A. A., Pudovkin, M. I., Gary, S. P., & Hubert, D. 2001, JGR, 106, 21689 CrossRefGoogle Scholar
Samsonov, A. A., Sibeck, D. G., & Imber, J. 2007, Journal of Geophysical Research (Space Physics), 112, 12220 Google Scholar
Santos-Lima, R., de Gouveia Dal Pino, E. M., Lazarian, A., & Falceta-Gonçalves, D. 2009, IAU Symposium, 259, 563 Google Scholar
Santos-Lima, R., Lazarian, A., de Gouveia Dal Pino, E. M., & Cho, J. 2010, ApJ, 714, 442 CrossRefGoogle Scholar
Santos-Lima, R., de Gouveia Dal Pino, E. M., & Lazarian, A. 2012, ApJ, 747, 21 CrossRefGoogle Scholar
Santos-Lima, R., de Gouveia Dal Pino, E. M., & Lazarian, A. 2012, MNRAS, in press, arXiv:1211.1059Google Scholar
Santos-Lima, R., de Gouveia Dal Pino, E. M., Kowal, G., Nackwacki, S., Falceta-Gonçalves, D., & Lazarian, A. 2012, submittedGoogle Scholar
Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L., & McWilliams, J. C. 2004, ApJ, 612, 276 CrossRefGoogle Scholar
Schekochihin, A. A., Iskakov, A. B., Cowley, S. C., et al. 2007, New Journal of Physics, 9, 300 CrossRefGoogle Scholar
Subramanian, K. 1998, MNRAS, 294, 718 CrossRefGoogle Scholar
Subramanian, K., Shukurov, A., & Haugen, N. E. L. 2006, MNRAS, 366, 1437 CrossRefGoogle Scholar
Vaĭnshteĭn, S. I. & Zel'dovich, Y. B. 1972, Soviet Physics Uspekhi, 15, 159 CrossRefGoogle Scholar
Verma, M. K. 2004, Phys. Rep., 401, 229 CrossRefGoogle Scholar
Vishniac, E. T. & Cho, J. 2001, ApJ, 550, 752 CrossRefGoogle Scholar