Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T17:25:06.219Z Has data issue: false hasContentIssue false

The Tully-Fisher relation: evolution with redshift and environment

Published online by Cambridge University Press:  01 August 2006

Alfonso Aragón-Salamanca*
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Tully-Fisher Relation (TFR) links two fundamental properties of disk galaxies: their luminosity and their rotation velocity (mass). The pioneering work of Vogt et al. in the 1990's showed that it is possible to study the TFR for spiral galaxies at considerable look-back-times, and use it as a powerful probe of their evolution. In recent years, several groups have studied the TFR for galaxies in different environments reaching redshifts beyond one. In this brief review I summarise the main results of some of these studies and their consequences for our understanding of the formation and evolution of disk galaxies. Particular emphasis is placed on the possible environment-driven differences in the behaviour of the TFR for field and cluster galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Aragón-Salamanca, A., Bedregal, A. G., & Merrifield, M. R., 2006, A&A, 458. 101Google Scholar
Bamford, S.P., Milvang-Jensen, B., Aragón-Salamanca, A., & Simard, L. 2005, MNRAS, 361, 109CrossRefGoogle Scholar
Bamford, S. P., Aragón-Salamanca, A., & Milvang-Jensen, B. 2006, MNRAS, 366, 308CrossRefGoogle Scholar
Bedregal, A. G., Aragón-Salamanca, A., Merrifield, M. R., & Milvang-Jensen, B. 2006a, MNRAS, 371, 1912CrossRefGoogle Scholar
Bedregal, A. G., Aragón-Salamanca, A., & Merrifield, M. R., 2006b, MNRAS, in press, astro-ph/0609076Google Scholar
Böhm, A. 2004, A&A, 420, 97Google Scholar
Conselice, C. J., Bundy, K., Ellis, R. S., Brichmann, J., Vogt, N. P., & Phillips, A. C. 2005, ApJ, 628, 160CrossRefGoogle Scholar
Flores, H., Hammer, F., Puech, M., Amram, P., & Balkowski, C. 2006, A&A, 455, 107Google Scholar
Kannappan, S. J., Fabricant, D. G., & Franx, M. 2002, AJ, 123, 2358CrossRefGoogle Scholar
Mathieu, A., Merrifield, M. R., & Kuijken, K. 2002, MNRAS, 330, 251CrossRefGoogle Scholar
Metevier, A. J., Koo, D. C., Simard, L., & Phillips, A. C. 2006, ApJ, 643, 764CrossRefGoogle Scholar
Milvang-Jensen, B., Aragón-Salamanca, A., Hau, G. K. T., Jørgensen, I., & Hjorth, J. 2003, MNRAS, 339, L1CrossRefGoogle Scholar
Nakamura, O., Aragón-Salamanca, A., Milvang-Jensen, B., Arimoto, N., Ikuta, C., & Bamford, S. P. 2006, MNRAS, 366, 144CrossRefGoogle Scholar
Smith, J. K. 2004, MNRAS, 354, L19CrossRefGoogle Scholar
Swinbank, A. M., Bower, R. G., Smith, G. P., Smail, I., Kneib, J.-P., Ellis, R. S., Stark, D. P., & Bunker, A. J. 2006, MNRAS, 368, 1631CrossRefGoogle Scholar
Tully, R. B., & Fisher, J. R. 1977, A&A, 54, 661Google Scholar
van Starkenburg, L., van der Werf, P. P., Yan, L., & Moorwood, A. F. M. 2006, A&A, 450, 25Google Scholar
Vogt, N. P., Forbes, D. A., Phillips, A. C., Gronwall, C., Faber, S. M., Illingworth, G. D., & Koo, D. C. 1996, ApJ, 465, L15CrossRefGoogle Scholar
Vogt, N. P., Haynes, M. P., Herter, T., & Giovanelli, R. 2004a, AJ, 127, 3273CrossRefGoogle Scholar
Vogt, N. P., Haynes, M. P., Giovanelli, R., & Herter, T. 2004b, AJ, 127, 3300CrossRefGoogle Scholar
Vogt, N. P., Haynes, M. P., Giovanelli, R., & Herter, T. 2004c, AJ, 127, 3325CrossRefGoogle Scholar
Weiner, B. J. 2006, ApJ, in press, astro-ph/0609091Google Scholar
White, S. D. M. 2005, A&A, 444, 365Google Scholar
Ziegler, B. L. 2002, ApJ, 564, L69CrossRefGoogle Scholar
Ziegler, B. L., Böhm, A., Jäger, K., Heidt, J., Möllenhoff, C. 2003, ApJ, 598, L87CrossRefGoogle Scholar