Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T05:16:59.293Z Has data issue: false hasContentIssue false

Trojans in Exosystems with Two Massive Planets

Published online by Cambridge University Press:  29 April 2014

Rudolf Dvorak
Affiliation:
Universitätssternwarte, University of Vienna, Türkenschanzsstrasse 17, A-1180 Vienna, AUSTRIA email: [email protected]
Li-Yong Zhou
Affiliation:
Astronomy Department & Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210093, CHINA email: [email protected]
Helmut Baudisch
Affiliation:
Universitätssternwarte, University of Vienna, Türkenschanzsstrasse 17, A-1180 Vienna, AUSTRIA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We take as dynamical model for extrasolar planetary systems a central star like our Sun and two giant planets m1 and m2 like Jupiter and Saturn. We change the mass ratio μ=m2/m1 of the two large planets for a wide range of 1/16 < μ < 16. We also change the ratio between the initial semi-major axes (ν=a2/a1) in the range of 1.2 < ν < 3 to model the different architecture of extrasolar planetary systems hosting two giant planets. The results for possible Trojans (Trojan planets) in the equilateral equilibrium points of the inner planet m1 and the outer planet m2 were derived with the aid of numerical integration. It turned out that in many configurations – depending on the mass ratios μ and the semi-major axes ratio ν – giant planets may host Trojans.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Baudisch, H. & Dvorak, R.Where are the Saturn Trojans?, in Proceedings of the Journées 2011, “Systèmes de référence spatio-temporels”, eds. Schuh, H., Böhm, S., Nilsson, T. and Capitaine, N., Vienna University of Technology, pp. 225228 (2012)Google Scholar
Beaugé, C., Sándor, Zs., Érdi, B., & Süli, Á., Co-orbital terrestrial planets in exoplanetary systems: a formation scenario, A&A 463, 359 (2007)Google Scholar
Delva, M., Integration of the elliptic restricted three-body problem with Lie series, Celest. Mech. 34, 145 (1984)CrossRefGoogle Scholar
Dvorak, R., Pilat-Lohinger, E., Schwarz, R., & Freistetter, F., Extrasolar Trojan planets close to habitable zones, A&A 426, L37 (2004)Google Scholar
Dvorak, R., & Schwarz, R.On the stability regions of the Trojan asteroids, Celest. Mech. Dyn. Astr. 92, 19 (2005)CrossRefGoogle Scholar
Dvorak, R., Lhotka, C., & Zhou, L.The orbit of 2010 TK7: possible regions of stability for other Earth Trojan asteroids, A&A 541 127 (2012)Google Scholar
Eggl, S. & Dvorak, R., Lecture Notes in Physics, 790, 431 (2010)Google Scholar
Érdi, B. & Sándor, Z., Stability of Co-Orbital Motion in Exoplanetary Systems, Celest. Mech. Dyn. Astr. 92, 113 (2005)Google Scholar
Gladman, B.Dynamics of systems of two close planets. Icarus, 106, 247 (1993)CrossRefGoogle Scholar
Hanslmeier, A. & Dvorak, R., Numerical Integration with Lie Series, A&A 132, 203 (1984)Google Scholar
Mikkola, S. & Innanen, K., A numerical exploration of the evolution of Trojan-type asteroidal orbits, AJ 104, 1641 (1992)CrossRefGoogle Scholar
Nesvorný, D. & Dones, L., How Long-Lived Are the Hypothetical Trojan Populations of Saturn, Uranus, and Neptune?, Icarus, 160, 271 (2002)Google Scholar
Robutel, P., Gabern, F., & Jorba, A., The observed Trojans and the global dynamics around the Lagrangian points of the Sun Jupiter System, Celest. Mech. Dyn. Astr. 92, 53 (2005)Google Scholar
Schwarz, R., Gyergyovits, M., & Dvorak, R., On the stability of high inclined L4 and L5 Trojans, Celest. Mech. Dyn. Astr. 90, 139 (2004)Google Scholar
Schwarz, R., Süli, Á., Dvorak, R., & Pilat-Lohinger, E., Stability of Trojan planets in multiplanetary systems, Celest. Mech. Dyn. Astr. 104, 69 (2009)CrossRefGoogle Scholar
Zhou, L. Y., Dvorak, R., & Sun, Y. S., The dynamics of Neptune Trojan - I. The inclined orbits, MNRAS, 398, 1217 (2009)Google Scholar
Zhou, L. Y., Dvorak, R., & Sun, Y. S., The dynamics of Neptune Trojans - II. Eccentric orbits and observed objects, MNRAS 410, 1849 (2011)Google Scholar