Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:04:07.110Z Has data issue: false hasContentIssue false

Triggered formation and collapse of molecular cloud cores

Published online by Cambridge University Press:  01 August 2006

Anthony P. Whitworth*
Affiliation:
School of Physics & Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, Wales, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

First I discuss the dynamics of core formation in two scenarios relevant to triggered star formation, namely the fragmentation of shock-compressed layers created by colliding turbulent flows and the fragmentation of shells swept up by expanding nebulae. Second I discuss the influence of thermodynamics on the core mass spectrum, on determining which cores are ‘pre-stellar’ (i.e. destined to spawn stars) and on the minimum mass for a pre-stellar core. Third, I discuss the properties of pre-existing cores whose collapse has been triggered by an increase in external pressure, and compare the results with observations of collapsing pre-stellar cores and evaporating gaseous globules (EGGs).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Boyd, D.F.A. & Whitworth, A.P. 2005, A&A 430, 1059Google Scholar
Chabrier, G. 2003, PASP, 115, 763CrossRefGoogle Scholar
Elmegreen, B.G. & Lada, C.J. 1977, ApJ 214, 725CrossRefGoogle Scholar
Goodwin, S.P. & Kroupa, P. 2005, A&A 439, 565Google Scholar
Hennebelle, P., Whitworth, A.P., Gladwin, P.P. & André, Ph. 2003, MNRAS 340, 870CrossRefGoogle Scholar
Hennebelle, P., Whitworth, A.P., Cha, S.-H. & Goodwin, S.P. 2004, MNRAS 348, 687CrossRefGoogle Scholar
Hester, J.J., et al. 1996, AJ 111, 2349CrossRefGoogle Scholar
Hubber, D.A. & Whitworth, A.P. 2005, A&A 437, 113Google Scholar
Kroupa, P. 2002, Science 295, 82CrossRefGoogle Scholar
Larson, R.B. 1981, MNRAS 194, 809CrossRefGoogle Scholar
Luhman, K. 2004, ApJ 617, 1216CrossRefGoogle Scholar
McDonald, J.M. & Clarke, C.J. 1995, MNRAS 275, 671CrossRefGoogle Scholar
Nutter, D. & Ward-Thompson, D. 2006, MNRAS in pressGoogle Scholar
Rees, M.J. 1976, MNRAS 176, 483CrossRefGoogle Scholar
Tafalla, M., Mardones, D., Myers, P.C., Caselli, P., Bachiller, R., & Benson, P.J. 1998, ApJ 504, 900CrossRefGoogle Scholar
Whitworth, A.P., Chapman, S.J., Bhattal, A.S., Disney, M.J., Pongracic, H., & Turner, J.A. 1995, MNRAS 277, 727CrossRefGoogle Scholar
Whitworth, A.P., Bhattal, A.S., Chapman, S.J., Disney, M.J., & Turner, J.A. 1994, MNRAS 268, 291CrossRefGoogle Scholar
Whitworth, A.P. & Francis, N. 2002, MNRAS 329, 641CrossRefGoogle Scholar
Whitworth, A.P. & Stamatellos, D. 2006, A&A in pressGoogle Scholar
Whitworth, A.P. & Zinnecker, H. 2004, A&A 427, 299Google Scholar
Williams, J.P., de Geus, E.J., & Blitz, L. 1994, ApJ 428, 693CrossRefGoogle Scholar