Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T04:09:18.107Z Has data issue: false hasContentIssue false

Transverse bar/bulge kinematics with Gaia and VVV

Published online by Cambridge University Press:  14 May 2020

Jason L. Sanders
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK email: [email protected]
N. Wyn Evans
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK email: [email protected]
Leigh Smith
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK email: [email protected] School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
Philip Lucas
Affiliation:
School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new results on the Galactic bar/bulge transverse velocity structure using Gaia and the VISTA Variables in Via Lactea (VVV) survey. Gaia is complemented in high extinction regions by the multi-epoch infrared VVV observations for which derived relative proper motions can be tied to Gaia’s absolute frame. We extract kinematic maps (both 2D and 3D) of the Galactic bar/bulge, from which we measure the pattern speed of the bar using a novel technique. We focus on the evidence of an X-shaped bulge from the kinematic maps.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bland-Hawthorn, J. & Gerhard, O. 2016, ARA&A, 54, 529CrossRefGoogle Scholar
Clarke, J. P., Wegg, C., Gerhard, O., et al. 2019, arXiv e-printsGoogle Scholar
Collaboration, Gaiaet al. 2016, A&A, 595, A1Google Scholar
Collaboration, Gaiaet al. 2018, A&A, 616, A1Google Scholar
Gonzalez, O. A., Zoccali, M., Debattista, V. P., et al. 2015, A&A, 583, L5Google Scholar
Joo, S.-J., Lee, Y.-W., & Chung, C. 2017, ApJ, 840, 98CrossRefGoogle Scholar
Kozłowski, S., Wo´zniak, P. R., Mao, S., et al. 2006, MNRAS, 370, 435CrossRefGoogle Scholar
Lindegren, L.et al. 2018, A&A, 616, A2Google Scholar
López-Corredoira, M., Lee, Y.-W., Garźon, F., & Lim, D. 2019, A&A, 627, A3Google Scholar
McWilliam, A. & Zoccali, M. 2010, ApJ, 724, 1491CrossRefGoogle Scholar
Nataf, D. M., Udalski, A., Gould, A., et al. 2010, ApJ, 721, L28CrossRefGoogle Scholar
Rattenbury, N. J., Mao, S., Debattista, V. P., et al. 2007, MNRAS, 378, 1165CrossRefGoogle Scholar
Sanders, J. L., Smith, L., Evans, N. W., & Lucas, P. 2019a, MNRASGoogle Scholar
Sanders, J. L., Smith, L., & Evans, N. W. 2019b, MNRAS, 488, 4552CrossRefGoogle Scholar
Smith, L. C.et al. 2018, MNRAS, 474, 1826CrossRefGoogle Scholar
Tremaine, S. & Weinberg, M. D. 1984, ApJ, 282, L5CrossRefGoogle Scholar