Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T18:58:36.237Z Has data issue: false hasContentIssue false

The Trans-Neptunian Automated Occultation Survey (TAOS II)

Published online by Cambridge University Press:  29 August 2019

M. J. Lehner
Affiliation:
Institute for Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan email: [email protected] Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA Harvard-Smithsonian Center for Astrophysics, Cambridge, USA
S-Y. Wang
Affiliation:
Institute for Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan email: [email protected]
M. Reyes-Ruiz
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Baja California, México
Z-W. Zhang
Affiliation:
Institute for Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan email: [email protected]
L. Figueroa
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Baja California, México
C-K. Huang
Affiliation:
Institute for Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan email: [email protected] Institute of Astronomy, National Central University, Taoyuan City, Taiwan
W-L. Yen
Affiliation:
Institute for Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan email: [email protected]
C. Alcock
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, USA
F. Alvarez Santana
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Baja California, México
J. Castro-Chacón
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Baja California, México
W-P. Chen
Affiliation:
Institute of Astronomy, National Central University, Taoyuan City, Taiwan
Y-H. Chu
Affiliation:
Institute for Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan email: [email protected]
K. H. Cook
Affiliation:
Institute for Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan email: [email protected]
J. C. Geary
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, USA
B. Hernández
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Baja California, México
J. Karr
Affiliation:
Institute for Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan email: [email protected]
J. J. Kavelaars
Affiliation:
Herzberg Astronomy & Astrophysics Research Centre, NRC, Victoria, BC, Canada Department of Physics and Astronomy, University of Victoria, BC, Canada
T. Norton
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, USA
A. Szentgyorgyi
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

TAOS II is a next-generation occultation survey with the goal of measuring the size distribution of the small end of the Kuiper Belt (objects with diameters 0.5–30 km). Such objects have magnitudes r > 30, and are thus undetectable by direct imaging. The project will operate three telescopes at San Pedro Mártir Observatory in Baja California, México. Each telescope will be equipped with a custom-built camera comprised of a focal-plane array of CMOS imagers. The cameras will be capable of reading out image data from 10,000 stars at a cadence of 20 Hz. The telescopes will monitor the same set of stars simultaneously to search for coincident occultation detections, thus minimising the false-positive rate. This talk described the project, and reported on the progress of the development of the survey infrastructure.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bailey, M. E. 1976, Nature, 259, 29010.1038/259290a0CrossRefGoogle Scholar
Benavidez, P. G., & Campo Bagatin, A. 2009, P&SS, 57, 201Google Scholar
Benz, W., & Asphaug, E. 1999, Icarus, 142, 5CrossRefGoogle Scholar
Bernstein, G. M., et al. 2004, AJ, 128, 136410.1086/422919CrossRefGoogle Scholar
Bianco, F. B., et al. 2009, AJ, 138, 56810.1088/0004-6256/138/2/568CrossRefGoogle Scholar
Bianco, F. B., et al. 2010, AJ, 139, 149910.1088/0004-6256/139/4/1499CrossRefGoogle Scholar
Bickerton, S. J., Kavelaars, J. J., & Welch, D. L. 2008, AJ, 135, 103910.1088/0004-6256/135/3/1039CrossRefGoogle Scholar
Bickerton, S. J., Welch, D. L., & Kavelaars, J. J. 2009, AJ, 137, 4270CrossRefGoogle Scholar
Brown, M. J. I., & Webster, R. L. 1997, MNRAS, 289, 783CrossRefGoogle Scholar
Chang, H.-K., et al. 2006, Nature, 442, 66010.1038/nature04941CrossRefGoogle Scholar
Chang, H.-K., et al. 2007, MNRAS, 378, 128710.1111/j.1365-2966.2007.11729.xCrossRefGoogle Scholar
Cooray, A. 2003, ApJ, 589, L97CrossRefGoogle Scholar
Cooray, A., & Farmer, A. J. 2003, ApJ, 587, L12510.1086/375288CrossRefGoogle Scholar
Davis, D. R., & Farinella, P. 1997, Icarus, 125, 5010.1006/icar.1996.5595CrossRefGoogle Scholar
Duncan, M. J., & Levison, H. F. 1997, Science, 276, 167010.1126/science.276.5319.1670CrossRefGoogle Scholar
Duncan, M. J., Levison, H. F., & Budd, S. M. 1995, AJ, 110, 3073CrossRefGoogle Scholar
Fraser, W. C., & Kavelaars, J. J. 2008, Icarus, 198, 452CrossRefGoogle Scholar
Fraser, W. C., & Kavelaars, J. J. 2009, AJ, 137, 7210.1088/0004-6256/137/1/72CrossRefGoogle Scholar
Fraser, W. C., et al. 2008, Icarus, 195, 82710.1016/j.icarus.2008.01.014CrossRefGoogle Scholar
Fuentes, C. I., George, M. R., & Holman, M. J. 2009, ApJ, 696, 9110.1088/0004-637X/696/1/91CrossRefGoogle Scholar
Fuentes, C. I., & Holman, M. J. 2008, AJ, 136, 8310.1088/0004-6256/136/1/83CrossRefGoogle Scholar
Holman, M. J., & Wisdom, J. 1993, AJ, 105, 198710.1086/116574CrossRefGoogle Scholar
Kenyon, S. J., & Bromley, B. C. 2001, AJ, 121, 53810.1086/318019CrossRefGoogle Scholar
Kenyon, S. J., & Bromley, B. C. 2004, AJ, 128, 1916CrossRefGoogle Scholar
Kenyon, S. J., & Bromley, B. C. 2009, ApJ, 690, L140CrossRefGoogle Scholar
Kenyon, S. J., & Luu, J. X. 1999, AJ, 118, 110110.1086/300969CrossRefGoogle Scholar
Kenyon, S. J., & Luu, J. X. 1999, ApJ, 526, 465CrossRefGoogle Scholar
Lehner, M. J., et al. 2012, Ground-based and Airborne Telescopes, IV, Proc. SPIE, 8444Google Scholar
Lehner, M. J., et al. 2014, Ground-based and Airborne Instrumentation for Astronomy, V, Proc. SPIE, 9147, 79Google Scholar
Lehner, M. J., et al. 2016, Ground-based and Airborne Telescopes, VI, Proc. SPIE, 9906, 5Google Scholar
Levison, H. F., & Duncan, M. J. 1997, Icarus, 127, 1310.1006/icar.1996.5637CrossRefGoogle Scholar
Liu, C.-Y., et al. 2008, MNRAS, 388, L44CrossRefGoogle Scholar
Luu, J. X., & Jewitt, D. C. 2002, ARA&A, 40, 6310.1146/annurev.astro.40.060401.093818CrossRefGoogle Scholar
Morbidelli, A. 1997, Icarus, 127, 1CrossRefGoogle Scholar
Nihei, T. C., et al. 2007, AJ, 134, 1596CrossRefGoogle Scholar
Pan, M., & Sari, R. 2005, Icarus, 173, 34210.1016/j.icarus.2004.09.004CrossRefGoogle Scholar
Pratlong, J., et al. 2016, High Energy, Optical, and Infrared Detectors for Astronomy, VII, Proc. SPIE, 9915, 14Google Scholar
Roques, F., & Moncuquet, M. 2000, Icarus, 147, 530CrossRefGoogle Scholar
Roques, F., Moncuquet, M., & Sicardy, B. 1987, AJ, 93, 1549CrossRefGoogle Scholar
Roques, F., et al. 2003, ApJ, 594, L6310.1086/378576CrossRefGoogle Scholar
Roques, F., et al. 2006, AJ, 132, 81910.1086/505623CrossRefGoogle Scholar
Schlichting, H. E., et al. 2009, Nature, 462, 895CrossRefGoogle Scholar
Schlichting, H. E., et al. 2012, ApJ, 761, 15010.1088/0004-637X/761/2/150CrossRefGoogle Scholar
Stern, S. A. 1996, AJ, 112, 1203CrossRefGoogle Scholar
Tancredi, G., et al. 2006, Icarus, 182, 527CrossRefGoogle Scholar
Volk, K., & Malhotra, R. 2008, ApJ, 687, 71410.1086/591839CrossRefGoogle Scholar
Wang, J., et al. 2009, AJ, 138, 189310.1088/0004-6256/138/6/1893CrossRefGoogle Scholar
Wang, J., et al. 2010, AJ, 139, 200310.1088/0004-6256/139/5/2003CrossRefGoogle Scholar
Wang, S.-Y., et al. 2014, High Energy, Optical, and Infrared Detectors for Astronomy, VI, Proc. SPIE, 9154, 2Google Scholar
Zhang, Z.-W., et al. 2008, ApJ, 685, L157CrossRefGoogle Scholar
Zhang, Z.-W., et al. 2013, AJ, 146, 14CrossRefGoogle Scholar