Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T09:51:48.115Z Has data issue: false hasContentIssue false

Tracing the early planet formation with molecular lines: chemistry of vortex in the protoplanetary disks

Published online by Cambridge University Press:  13 January 2020

Natalia Dzyurkevich
Affiliation:
Institut für Theoretische Astrophysik, University of Heidelberg, Albert-Überle Str. 2, Heidelberg, D-69120, Germany email: [email protected] Dept. of Physics & Astronomy & California State University at Northridge 18111 Nordhoff St, Northridge, CA 91330 email: [email protected]
Wladimir Lyra
Affiliation:
Dept. of Physics & Astronomy & California State University at Northridge 18111 Nordhoff St, Northridge, CA 91330 email: [email protected]
Liton Majumdar
Affiliation:
Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The millimeter observations of dust in protoplanetary disks show us spectacular structures like numerous gaps, vortices and spirals. In particular, IRS 48 disk demonstrates a large vortex-like structure. Molecular lines provide information about disks that is complementary to dust continuum observations: formaldehyde was found on the inner edge of the IRS 48 vortex, along with detections of SO2 and CS isotopes.

We use a reduced chemical network containing main carbon- and sulfur-bearing species to find the molecular species which can be sensitive to the gaps in dust, as well as to accumulation of the dust grains in the vortex. We find that SO molecule is the main reservoir for sulfur in IRS 48, for adopted disk model as in Bruderer et al. 2014. While SO is very sensitive to the gap edge, it cannot trace the vortex as it is weakly responding to the local increase in dust. Instead, SO2 molecule abundance can be expected to drop quickly within the vortex, making it an interesting tracer of dust-trapping structure.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Bruderer, S., van der Marel, N., van Dishoeck, E. F. & van Kempen, T. A., 2014 A&A, 562, 26CrossRefGoogle Scholar
Van der Marel, N., van Dishoeck, E. F., Bruderer, S., & van Kempen, T. A., 2014 A&A, 563, 113CrossRefGoogle Scholar
Van der Marel, N., van Dishoeck, E. F., Bruderer, S., Birnstiel, T., Pinilla, P., Dullemond, C. P., van Kempen, T. A., Schmalzl, M., Brown, J. M., Herczeg, G. J., Mathews, G. S. & Geers, V. 2013, Science, 340, 1199CrossRefGoogle Scholar
Van der Marel, N., van Dishoeck, E. F., Bruderer, S., Andrews, S. M., Pontoppidan, K. M., Herczeg, G. J., van Kempen, T. & Miotello, A. 2017, A&A, 585, 5810.1051/0004-6361/201526988CrossRefGoogle Scholar
Dzyurkevich, N., Commerçon, B., Lesaffre, P. & Semenov, D. 2017, A&A, 603, 105CrossRefGoogle Scholar