Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T22:20:01.140Z Has data issue: false hasContentIssue false

Tracing pumping routes in OH

Published online by Cambridge University Press:  01 March 2007

Malcolm D. Gray
Affiliation:
Astrophysics Group, School of Physics & Astronomy, University of Manchester, PO Box 88, Manchester M60 1QD, United Kingdom email: [email protected]
D. A. Howe
Affiliation:
Astrophysics Group, School of Physics & Astronomy, University of Manchester, PO Box 88, Manchester M60 1QD, United Kingdom email: [email protected]
B. M. Lewis
Affiliation:
Arecibo Observatory, HC3, Box 53995, Arecibo, PR 00612, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a general method of restoring detailed information about the population flow in molecules under non-local-thermodynamic-equilibrium (NLTE) conditions. This information is usually discarded in numerical algorithms which generate only a solution. We apply the method to tracing the pumping schemes for OH in models that represent three common astrophysical maser environments: the envelopes of asymptotic-giant-branch (AGB) stars, the envelopes of red supergiants, and Galactic star-forming regions. In all three of these cases, we show that a large fraction, typically 0.8 or more, of the maser inversion can be recovered from a set of routes that depend on a much smaller fraction (considerably less than 0.1) of the total number of input coefficients to the model. Therefore, these cases display underlying simplicity in the pumping scheme.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bujarrabal, V., Guibert, J., & Nguyen-Q-Rieu 1980, A&A 84, 311Google Scholar
Dickinson, D. F. 1987, ApJ 313, 408CrossRefGoogle Scholar
Elitzur, M. 1976, ApJ 203, 124CrossRefGoogle Scholar
Elitzur, M. 1981, in: Iben, I. & Renzini, A. (eds.), Physical Processes in Red Giants, (Dordrecht: Reidel), p. 363CrossRefGoogle Scholar
Elitzur, M., Goldreich, P., & Scoville, N. 1976, ApJ 205, 384CrossRefGoogle Scholar
Gray, M. D. 2007, MNRAS 375, 477CrossRefGoogle Scholar
Gray, M. D., Field, D., & Doel, R. C. 1992, A&A 262, 555Google Scholar
Gray, M. D., Howe, D. A., & Lewis, B. M. 2005, MNRAS 364, 783CrossRefGoogle Scholar
He, J. H., & Chen, P. S. 2004, New Astronomy 9, 54Google Scholar
He, J. H., Szczerba, R., Chen, P. S., & Sobolev, A. M. 2005, A&A 434, 201Google Scholar
Pavlakis, K. G., & Kylafis, N. D. 1996, ApJ 467, 309CrossRefGoogle Scholar
Sobolev, A. M. 1986, Sov. Ast. 30, 399Google Scholar
Sobolev, A. M. 1989, Astronomiche Nachrichten 310, 343CrossRefGoogle Scholar
Sobolev, A. M., & Deguchi, S. 1994, ApJ 433, 719CrossRefGoogle Scholar