Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T00:52:47.907Z Has data issue: false hasContentIssue false

Tracing high redshift cosmic web with quasar systems

Published online by Cambridge University Press:  12 October 2016

Maret Einasto*
Affiliation:
Tartu Observatory, Observatooriumi 1, 61602 Tõravere, Estonia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the cosmic web at redshifts 1.0 ≤ ≤ 1.8 using quasar systems based on quasar data from the SDSS DR7 QSO catalogue. Quasar systems were determined with a friend-of-friend (FoF) algorithm at a series of linking lengths. At the linking lengths l ≤ 30 h-1 Mpc the diameters of quasar systems are smaller than the diameters of random systems, and are comparable to the sizes of galaxy superclusters in the local Universe. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At larger linking lengths the diameters of quasar systems are comparable with the sizes of supercluster complexes in our cosmic neighbourhood. The richest quasar systems have diameters exceeding 500h Mpc. Very rich systems can be found also in random distribution but the percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples showing that the large-scale distribution of quasar systems differs from random distribution. Quasar system catalogues at our web pages (http://www.aai.ee/maret/QSOsystems.html) serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Clowes, R. G. & Campusano, L. E. 1991, MNRAS, 249, 218 Google Scholar
Clowes, R. G., Campusano, L. E., Graham, M. J., & Söchting, I. K. 2012, MNRAS, 419, 556 CrossRefGoogle Scholar
Clowes, R. G., Harris, K. A., Raghunathan, S., et al. 2013, MNRAS, 429, 2910 Google Scholar
Einasto, M., Einasto, J., Tago, E., Dalton, G. B., & Andernach, H. 1994, MNRAS, 269, 301 Google Scholar
Einasto, M., Tago, E., Jaaniste, J., Einasto, J., & Andernach, H. 1997, A&AS, 123, 119 Google Scholar
Einasto, M., Liivamägi, L. J., Tempel, E., et al. 2011 Natureexlabc, ApJ, 736, 51 Google Scholar
Einasto, M., Liivamägi, L. J., Tago, E., et al. 2011b, A&A, 532, A5 Google Scholar
Einasto, J., Suhhonenko, I., Hütsi, G., et al. 2011a, A&A, 534, A128 Google Scholar
Einasto, M. and Tago, E. and Lietzen, H. et al. 2014, A&A, 568, A46 Google Scholar
Komberg, B. V., Kravtsov, A. V., & Lukash, V. N. 1996, MNRAS, 282, 713 Google Scholar
Liivamägi, L. J., Tempel, E., & Saar, E. 2012, A&A, 539, A80 Google Scholar
Park, C., Choi, Y.-Y., Kim, J., et al. 2012, ApJL, 759, L7 Google Scholar
Schneider, D. P., Richards, G. T., Hall, P. B., et al. 2010, AJ, 139, 2360 Google Scholar
van de Weygaert, R. & Schaap, W. 2009, in Lecture Notes in Physics, Berlin Springer Verlag, Vol. 665, Data Analysis in Cosmology, ed. Martínez, V. J., Saar, E., Martínez-González, E., & Pons-Bordería, M.-J., 291–413CrossRefGoogle Scholar
Webster, A. 1982, MNRAS, 199, 683 Google Scholar