Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T23:57:57.216Z Has data issue: false hasContentIssue false

Towards a multi-scale understanding of the gas-star formation cycle in the Central Molecular Zone

Published online by Cambridge University Press:  09 February 2017

J. M. Diederik Kruijssen*
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, 69120 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Central Molecular Zone (CMZ, the central 500 pc of the Milky Way) contains the largest reservoir of high-density molecular gas in the Galaxy, but forms stars at a rate 10–100 times below commonly-used star formation relations. We discuss recent efforts in understanding how the nearest galactic nucleus forms its stars. The latest models of the gas inflow, star formation, and feedback duty cycle reproduce the main observable features of the CMZ, showing that star formation is episodic and that the CMZ currently resides at a star formation minimum. Using orbital modelling, we derive the three-dimensional geometry of the CMZ and show how the orbital dynamics and the star formation potential of the gas are closely coupled. We discuss how this coupling reveals the physics of star formation and feedback under the conditions seen in high-redshift galaxies, and promotes the formation of the densest stellar clusters in the Galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Adamo, A., et al., 2015, MNRAS, 452, 246 CrossRefGoogle Scholar
Bally, J., et al., 2010, ApJ, 721, 137 CrossRefGoogle Scholar
Barnes, A. L., et al., 2016, MNRAS submittedGoogle Scholar
Carretti, E., et al., 2013, Nature, 493, 66 Google Scholar
Clavel, M., et al., 2013, A&A, 558, A32 Google Scholar
Clavel, M., et al., 2014, in Ballet, J., et al., eds, SF2A-2014: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics. pp 85–88Google Scholar
Dale, J. E., Ercolano, B., Bonnell, I. A., 2015, MNRAS, 451, 987 Google Scholar
Davies, R. I., et al., 2007, ApJ, 671, 1388 Google Scholar
Daylan, T., et al., 2016, Physics of the Dark Universe, 12, 1 CrossRefGoogle Scholar
Federrath, C., et al., 2016, ApJ in press, arXiv:1609.05911Google Scholar
Ferrière, K., Gillard, W., Jean, P., 2007, A&A, 467, 611 Google Scholar
Genzel, R., Eisenhauer, F., Gillessen, S., 2010, Reviews of Modern Physics, 82, 3121 CrossRefGoogle Scholar
Ginsburg, A., et al., 2016a, A&A in press, arXiv:1605.09402Google Scholar
Ginsburg, A., et al., 2016b, A&A, 586, A50 Google Scholar
Henshaw, J. D., Longmore, S. N., Kruijssen, J. M. D., 2016a, MNRAS in press, arXiv:1609.01721Google Scholar
Henshaw, J. D., et al., 2016b, MNRAS, 457, 2675 Google Scholar
Immer, K., et al., 2012, A&A, 537, A121 Google Scholar
Kauffmann, J., Pillai, T., Zhang, Q., 2013, ApJ, 765, L35 Google Scholar
Kruijssen, J. M. D., 2012, MNRAS, 426, 3008 Google Scholar
Kruijssen, J. M. D., 2014, Classical and Quantum Gravity, 31, 244006 Google Scholar
Kruijssen, J. M. D., Longmore, S. N., 2013, MNRAS, 435, 2598 Google Scholar
Kruijssen, J. M. D., et al., 2011, MNRAS, 414, 1339 CrossRefGoogle Scholar
Kruijssen, J. M. D., et al., 2012, MNRAS, 419, 841 Google Scholar
Kruijssen, J. M. D., et al., 2014, MNRAS, 440, 3370 Google Scholar
Kruijssen, J. M. D., Dale, J. E., Longmore, S. N., 2015, MNRAS, 447, 1059 Google Scholar
Krumholz, M. R., Kruijssen, J. M. D., 2015, MNRAS, 453, 739 Google Scholar
Krumholz, M. R., McKee, C. F., 2005, ApJ, 630, 250 CrossRefGoogle Scholar
Krumholz, M. R., Kruijssen, J. M. D., Crocker, R. M., 2016, MNRAS submitted, arXiv:1605.02850Google Scholar
Launhardt, R., Zylka, R., Mezger, P. G., 2002, A&A, 384, 112 Google Scholar
Leroy, A. K., et al., 2013, AJ, 146, 19 Google Scholar
Longmore, S. N., et al., 2012, ApJ, 746, 117 Google Scholar
Longmore, S. N., et al., 2013a, MNRAS, 429, 987 Google Scholar
Longmore, S. N., et al., 2013b, MNRAS, 433, L15 CrossRefGoogle Scholar
Longmore, S. N., et al., 2014, Protostars and Planets VI, pp 291–314Google Scholar
Mills, E. A. C., et al., 2015, ApJ, 805, 72 CrossRefGoogle Scholar
Molinari, S., et al., 2011, ApJ, 735, L33 Google Scholar
Montenegro, L. E., Yuan, C., Elmegreen, B. G., 1999, ApJ, 520, 592 Google Scholar
Padoan, P., Nordlund, Å., 2011, ApJ, 730, 40 Google Scholar
Portegies Zwart, S. F., et al., 2001, ApJ, 546, L101 CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., Gieles, M., 2010, ARA&A, 48, 431 Google Scholar
Rathborne, J. M., et al., 2014a, ApJ, 786, 140 Google Scholar
Rathborne, J. M., et al., 2014b, ApJ, 795, L25 Google Scholar
Rathborne, J. M., et al., 2015, ApJ, 802, 125 Google Scholar
Sawada, T., et al., 2004, MNRAS, 349, 1167 Google Scholar
Sofue, Y., 1995, PASJ, 47, 527 Google Scholar
Su, M., Slatyer, T. R., Finkbeiner, D. P., 2010, ApJ, 724, 1044 Google Scholar
Walker, D. L., et al., 2015, MNRAS, 449, 715 Google Scholar
Walker, D. L., et al., 2016a, MNRAS submittedGoogle Scholar
Walker, D. L., et al., 2016b, MNRAS, 457, 4536 CrossRefGoogle Scholar
Yusef-Zadeh, F., et al., 2009, ApJ, 702, 178 Google Scholar