Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T05:25:00.222Z Has data issue: false hasContentIssue false

Toward Realistic Models of Core Collapse Supernovae: A Brief Review

Published online by Cambridge University Press:  20 January 2023

Anthony Mezzacappa*
Affiliation:
Department of Physics and Astronomy University of Tennessee, Knoxville, USA Nielsen Physics Building – 401 1408 Circle Drive Knoxville, TN 37996-1200 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Motivated by their role as the direct or indirect source of many of the elements in the Universe, numerical modeling of core collapse supernovae began more than five decades ago. Progress toward ascertaining the explosion mechanism(s) has been realized through increasingly sophisticated models, as physics and dimensionality have been added, as physics and numerical modeling have improved, and as the leading computational resources available to modelers have become far more capable. The past five to ten years have witnessed the emergence of a consensus across the core collapse supernova modeling community that had not existed in the four decades prior. For the majority of progenitors – i.e., slowly rotating progenitors – the efficacy of the delayed shock mechanism, where the stalled supernova shock wave is revived by neutrino heating by neutrinos emanating from the proto-neutron star, has been demonstrated by all core collapse supernova modeling groups, across progenitor mass and metallicity. With this momentum, and now with a far deeper understanding of the dynamics of these events, the path forward is clear. While much progress has been made, much work remains to be done, but at this time we have every reason to be optimistic we are on track to answer one of the most important outstanding questions in astrophysics: How do massive stars end their lives?

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbar, S., Capozzi, F., Glas, R., Janka, H. T., & Tamborra, I. 2021, On the characteristics of fast neutrino flavor instabilities in three-dimensional core-collapse supernova models. Phys. Rev. D, 103, 063033.CrossRefGoogle Scholar
Bethe, H. A. & Wilson, J. R. 1985, Revival of a stalled supernova shock by neutrino heating. Ap.J., 295, 14.CrossRefGoogle Scholar
Blondin, J., Mezzacappa, A., & DeMarino, C. 2003, Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae. Ap.J., 584, 971.CrossRefGoogle Scholar
Blondin, J. M. & Mezzacappa, A. 2007, Pulsar spins from an instability in the accretion shock of supernovae. Nature, 445, 58.CrossRefGoogle ScholarPubMed
Bollig, R., Janka, H. T., Lohs, A., Martnez-Pinedo, G., Horowitz, C. J., & Melson, T. 2017, Muon Creation in Supernova Matter Facilitates Neutrino-Driven Explosions. Phys. Rev. Lett., 119, 242702.CrossRefGoogle ScholarPubMed
Bruenn, S. W. 1985, Stellar core collapse - Numerical model and infall epoch. Ap.J. Suppl., 58, 771.CrossRefGoogle Scholar
Bruenn, S. W., De Nisco, K. R., & Mezzacappa, A. 2001, General Relativistic Effects in the Core Collapse Supernova Mechanism. Ap.J., 560, 326.CrossRefGoogle Scholar
Bruenn, S. W., Lentz, E. J., Hix, W. R., Mezzacappa, A., Harris, J. A., Messer, O. E. B., Endeve, E., Blondin, J. M., Chertkow, M. A., Lingerfelt, E. J., Marronetti, P., & Yakunin, K. N. 2016, The Development of Explosions in Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12-25 Stars. Ap.J., 818, 123.CrossRefGoogle Scholar
Bruenn, S. W., Mezzacappa, A., Hix, W. R., Lentz, E. J., Messer, O. E. B., Lingerfelt, E. J., Blondin, J. M., Endeve, E., Marronetti, P., & Yakunin, K. N. 2013, Axisymmetric Ab Initio Core-collapse Supernova Simulations of 12-25 Stars. Ap.J., 767, L6.Google Scholar
Burrows, A., Radice, D., & Vartanyan, D. 2019, Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13- stars. Mon. Not. R. Astron. Soc, 485, 3153.CrossRefGoogle Scholar
Burrows, A. & Sawyer, R. F. 1998, Effects of correlations on neutrino opacities in nuclear matter. Phys. Rev. C, 58, 554.CrossRefGoogle Scholar
Burrows, A. & Vartanyan, D. 2021, Core-collapse supernova explosion theory. Nature, 589, 29.CrossRefGoogle ScholarPubMed
Chu, R., Endeve, E., Hauck, C. D., & Mezzacappa, A. 2019, Realizability-preserving dg-imex method for the two-moment model of fermion transport. J. Comp. Phys., 389, 62.CrossRefGoogle Scholar
Colgate, S. A. & White, R. H. 1966, The Hydrodynamic Behavior of Supernovae Explosions. Ap.J., 143, 626.CrossRefGoogle Scholar
Couch, S. M., Chatzopoulos, E., Arnett, W. D., & Timmes, F. X. 2015, The Three-dimensional Evolution to Core Collapse of a Massive Star. Ap.J., 808, L21.Google Scholar
Duan, H., Fuller, G. M., & Qian, Y.-Z. 2010, Collective Neutrino Oscillations. Annu. Rev. Nucl. Part. Sci., 60, 569.CrossRefGoogle Scholar
Glas, R., Just, O., Janka, H.-T., & Obergaulinger, M. 2019, Three-dimensional core-collapse supernova simulations with multidimensional neutrino transport compared to the ray-by-ray-plus approximation. Ap.J., 873, 45.CrossRefGoogle Scholar
Hanke, F., Müller, B., Wongwathanarat, A., Marek, A., & Janka, H.-T. 2013, SASI Activity in Three-dimensional Neutrino-hydrodynamics Simulations of Supernova Cores. Ap.J., 770, 66. Hannestad, S. & Raffelt, G. 1998, Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes. Ap.J., 507, 339.Google Scholar
Herant, M., Benz, W., & Colgate, S. A. 1992, Postcollapse Hydrodynamics of SN 1987A: Two–Dimensional Simulations of the Early Evolution. Ap.J., 395, 642.CrossRefGoogle Scholar
Hix, W. R., Messer, O. E. B., Mezzacappa, A., Liebendörfer, M., Sampaio, J. M., Langanke, K., Dean, D. J., & Martinez-Pinedo, G. 2003, Consequences of Nuclear Electron Capture in Core Collapse Supernovae. Phys. Rev. Lett., 91, 201102.CrossRefGoogle ScholarPubMed
Janka, H.-T., Melson, T., & Summa, A. 2016, Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview. Annu. Rev. Nucl. Part. Sci., 66, 341.CrossRefGoogle Scholar
Kuroda, T., Arcones, A., Takiwaki, T., & Kotake, K. 2020, Magnetorotational Explosion of a Massive Star Supported by Neutrino Heating in General Relativistic Three-dimensional Simulations. Ap.J., 896, 102.CrossRefGoogle Scholar
Kuroda, T., Takiwaki, T., & Kotake, K. 2016, A New Multi-energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to the Gravitational Collapse of Massive Stars. Ap.J. Suppl., 222, 20.CrossRefGoogle Scholar
Langanke, K., Martnez-Pinedo, G., Sampaio, J. M., Dean, D. J., Hix, W. R., Messer, O. E., Mezzacappa, A., Liebendörfer, M., Janka, H.-T., & Rampp, M. 2003, Electron Capture Rates on Nuclei and Implications for Stellar Core Collapse. Phys. Rev. Lett., 90, 241102.CrossRefGoogle ScholarPubMed
Lentz, E. J., Bruenn, S. W., Hix, W. R., Mezzacappa, A., Messer, O. E. B., Endeve, E., Blondin, J. M., Harris, J. A., Marronetti, P., & Yakunin, K. N. 2015, Three-dimensional core-collapse supernova simulated using a 15 progenitor. Ap.J., 807, L31.Google Scholar
Lentz, E. J., Mezzacappa, A., Bronson Messer, O. E., Liebendörfer, M., Hix, W. R., & Bruenn, S. W. 2012, Interplay of Neutrino Opacities in Core-Collapse Supernova Simulations. Ap.J., 760, 94.CrossRefGoogle Scholar
Liebendörfer, M., Mezzacappa, A., Thielemann, F.-K., Messer, O. E. B., Hix, W. R., & Bruenn, S. W. 2001, Probing the gravitational well: No supernova explosion in spherical symmetry with general relativistic Boltzmann neutrino transport. Phys. Rev. D, 63, 103004.CrossRefGoogle Scholar
Melson, T., Janka, H.-T., Bollig, R., Hanke, F., Marek, A., & Müller, B. 2015,a Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scattering. Ap.J., 808, L42.CrossRefGoogle Scholar
Melson, T., Janka, H.-T., & Marek, A. 2015,b Neutrino-driven Supernova of a Low-mass Iron-core Progenitor Boosted by Three-dimensional Turbulent Convection. Ap.J., 801, L24.Google Scholar
Mezzacappa, A., Endeve, E., Messer, O. E. B., & Bruenn, S. W. 2020, Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae. Living Reviews in Computational Astrophysics, 6, 4.CrossRefGoogle Scholar
Mirizzi, A., Tamborra, I., Janka, H. T., Saviano, N., Scholberg, K., Bollig, R., Hüdepohl, L., & Chakraborty, S. 2016, Supernova neutrinos: production, oscillations and detection. Nuovo Cimento Rivista Serie, 39, 1.Google Scholar
Müller, B. 2016, The Status of Multi-Dimensional Core-Collapse Supernova Models. Proc. Astron. Soc. Aust., 33, e048.Google Scholar
Müller, B. 2020, Hydrodynamics of core-collapse supernovae and their progenitors. Living Reviews in Computational Astrophysics, 6, 3.CrossRefGoogle Scholar
Müller, B., Janka, H.-T., & Marek, A. 2012, A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code for Core-Collapse Supernovae II. Relativistic Explosion Models of Core-Collapse Supernovae. Ap.J., 756, 84.CrossRefGoogle Scholar
Müller, B., Melson, T., Heger, A., & Janka, H.-T. 2017, Supernova simulations from a 3D progenitor model - Impact of perturbations and evolution of explosion properties. Mon. Not. R. Ast. Soc., 472, 491.CrossRefGoogle Scholar
Müller, B., Tauris, T. M., Heger, A., Banerjee, P., Qian, Y.-Z., Powell, J., Chan, C., Gay, D. W., & Langer, N. 2019, Three-dimensional simulations of neutrino-driven core-collapse supernovae from low-mass single and binary star progenitors. Mon. Not. R. Ast. Soc., 484, 3307.CrossRefGoogle Scholar
Murphy, J. W., Dolence, J. C., & Burrows, A. 2013, The Dominance of Neutrino-driven Convection in Core-collapse Supernovae. Ap.J., 771, 52.CrossRefGoogle Scholar
Nagakura, H., Burrows, A., Johns, L., & Fuller, G. M. 2021, Where, when, and why: Occurrence of fast-pairwise collective neutrino oscillation in three-dimensional core-collapse supernova models. Phys. Rev. D, 104, 083025.CrossRefGoogle Scholar
Obergaulinger, M., Janka, H. T., & Aloy, M. A. Magnetic Field Amplification in Non-Rotating Stellar Core Collapse. In Pogorelov, N. V., Audit, E. , & Zank, G. P., editors, Numerical Modeling of Space Plasma Flows ASTRONUM-2014 2015, volume 498 of Astronomical Society of the Pacific Conference Series, 115.Google Scholar
O’Connor, E. & Couch, S. 2018, Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae. Ap.J., 865, 81.CrossRefGoogle Scholar
Rampp, M. & Janka, H.-T. 2002, Radiation hydrodynamics with neutrinos. Variable Eddington factor method for core-collapse supernova simulations. Astron. Astrophys., 396, 361.CrossRefGoogle Scholar
Reddy, S., Prakash, M., & Lattimer, J. M. 1998, Neutrino interactions in hot and dense matter. Phys. Rev. D, 58, 013009.CrossRefGoogle Scholar
Roberts, L. F., Ott, C. D., Haas, R., O’Connor, E. P., Diener, P., & Schnetter, E. 2016, General-Relativistic Three-Dimensional Multi-group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae. Ap.J., 831, 98.CrossRefGoogle Scholar
Sawyer, R. F. 2005, Speed-up of neutrino transformations in a supernova environment. Phys. Rev. D, 72, 045003.CrossRefGoogle Scholar
Skinner, M. A., Burrows, A., & Dolence, J. C. 2016, Should One Use the Ray-by-Ray Approximation in Core-collapse Supernova Simulations? Ap.J., 831, 81.Google Scholar
Stockinger, G., Janka, H. T., Kresse, D., Melson, T., Ertl, T., Gabler, M., Gessner, A., Wongwathanarat, A., Tolstov, A., Leung, S. C., Nomoto, K., & Heger, A. 2020, Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for Crab. Mon. Not. R. Ast. Soc., 496, 2039.CrossRefGoogle Scholar
Summa, A., Janka, H.-T., Melson, T., & Marek, A. 2018, Rotation-supported neutrino-driven supernova explosions in three dimensions and the critical luminosity condition. Ap.J., 852, 28.CrossRefGoogle Scholar
Tamborra, I. & Shalgar, S. 2021, New developments in flavor evolution of a dense neutrino gas. Ann. Rev. Nucl. Part. Sci., 71, 165.CrossRefGoogle Scholar
Tews, I., Lattimer, J. M., Ohnishi, A., & Kolomeitsev, E. E. 2017, Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy. Ap.J., 848, 105.CrossRefGoogle Scholar
Utrobin, V. P., Wongwathanarat, A., Janka, H. T., Müller, E., Ertl, T., Menon, A., & Heger, A. 2021, Supernova 1987A: 3D Mixing and Light Curves for Explosion Models Based on Binary-merger Progenitors. Ap.J., 914, 4.CrossRefGoogle Scholar
Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A., & Dolence, J. 2019, A successful 3D core-collapse supernova explosion model. Mon. Not. R. Ast. Soc., 482, 351.CrossRefGoogle Scholar
Vartanyan, D., Coleman, M. S. B., & Burrows, A. 2022, The collapse and three-dimensional explosion of three-dimensional massive-star supernova progenitor models. Mon. Not. R. Ast. Soc., 510, 4689.CrossRefGoogle Scholar
Vartanyan, D., Laplace, E., Renzo, M., Götberg, Y., Burrows, A., & de Mink, S. E. 2021, Binary-stripped Stars as Core-collapse Supernovae Progenitors. Ap.J., 916, L5.Google Scholar
Supernovae, Wilson, J. R. and Behavior, Post–Collapse. In J. M., Centrella, LeBlanc, J. M., & Bowers, R. L., editors, Numerical Astrophysics 1985, pg. 422, Boston. Jones and Bartlett.Google Scholar